I wonder if using multiple columns while writing a Spark DataFrame in spark makes future read slower? I know partitioning with critical columns for future filtering improves read performance, but what would be the effect of having multiple columns, even the ones not usable for filtering?
A sample would be:
(ordersDF
.write
.format("parquet")
.mode("overwrite")
.partitionBy("CustomerId", "OrderDate", .....) # <----------- add many columns
.save("/storage/Orders_parquet"))