4

Is there also a way to do make a lineplot with bandwidths in seaborn? Lineplot has a option to show the confidence interval (also see: Stackoverflow topic and documentation seaborn.lineplot). Or would someone advice me to do this with plotly/different package?

But what I'm looking for to plot a line with a signal and make several bandwiths arround it with a filled color (transparancy increases when bandwith is more away from the signal).

Based on this topic Fat band using matplotlib in python I've managed to do something in Matplotlib:

# Imports
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.lines as mlines
# Create dataset
mean = np.random.randint(1,101,24)
max_val = np.random.randint(101,150,24)
min_val = np.random.randint(-50,1,24)
std = np.random.randint(10,30,24)
df = pd.DataFrame({'min': min_val, 
                   '-3std': -3*std+mean,
                   '-2std': -2*std+mean,
                   '-1std': -1*std+mean,
                   'mean': mean, 
                   '1std': 1*std+mean,
                   '2std': 2*std+mean,
                   '3std': 3*std+mean,
                    'max':max_val})
# function for plot
def plot_bandwidth(df, set_labels=True, colortone='blue', ax=None, show=False):
    """
    Method to create a plot from a dataframe with the required columns [] and index
    :param (pd.DataFrame) df: Dataframe with numeric values
    :param (bool) set_labels: Boolean value to choose if labels are shown
    :param (string) colortone: String with the color to use as base for different lines/areas
    :param (ax) ax: Option to add axes to combine multiple plots
    :param (bool) show: Boolean to show plot or return figure
    :return plot/fig
    """
    # TODO: Assert if required columns not available
    if not ax:
        _, ax = plt.subplots()
    quarters_of_day = df.index
    ax.plot(quarters_of_day, df['mean'], color=colortone)
    ax.fill_between(quarters_of_day, df['-3std'], df['3std'], alpha=.1, color=colortone)
    ax.fill_between(quarters_of_day, df['-2std'], df['2std'], alpha=.1, color=colortone)
    ax.fill_between(quarters_of_day, df['-1std'], df['1std'], alpha=.1, color=colortone)
    ax.plot(quarters_of_day, df['min'], color='dark'+colortone, ls='--', alpha=.4)
    ax.plot(quarters_of_day, df['max'], color='dark'+colortone, ls='--', alpha=.4)
    if set_labels == True:
        ax.set_title("Example plot")
        ax.set_xlabel("Hour")
        ax.set_ylabel("Value")
        legend_mean = mlines.Line2D([], [], color=colortone, label='Mean')
        legend_bandwidth_std1 = mpatches.Patch(alpha=.3, color=colortone, label='Bandwidth of 1 sigma')
        legend_bandwidth_std2 = mpatches.Patch(alpha=.2, color=colortone, label='Bandwidth of 2 sigma')
        legend_bandwidth_std3 = mpatches.Patch(alpha=.1, color=colortone, label='Bandwidth of 3 sigma')
        legend_minmax = mlines.Line2D([], [], color='dark'+colortone, ls='--', alpha=.4, label='Minimum or Maximum')
        plt.legend(handles=[legend_mean, legend_bandwidth_std1, legend_bandwidth_std2, legend_bandwidth_std3, legend_minmax], loc='center left', bbox_to_anchor=(1, 0.5))     
    if show:
        return plt.show()
plot_bandwidth(df)

This leads to a plot like this:

enter image description here

DavidG
  • 24,279
  • 14
  • 89
  • 82
maik1k81
  • 41
  • 4
  • 1
    @Yatin This is my first post and as a new contributor you don't have this option yet. – maik1k81 May 19 '20 at 08:15
  • 1
    I don't think you can do this using just `seaborn.lineplot`. However, seaborn is essentially just a wrapper to matplotlib anyway. So you can use the `lineplot` from seaborn and also do `ax.fill_between` on the axes that seaborn plots on. – DavidG May 19 '20 at 08:27

0 Answers0