4

I run a code making some predictions on audio data using a simple CNN.

When using tf.keras.Model.predict I get an an average execution time of 0.17s, and when I use TF.lite.Interpreter I get 0.002s, about 75x faster ! I tried on my Desktop (Ubuntu 18.04, TF 2.1) and a Rapsberry Pi 3B+ (Raspbian Buster, same code) and get about the same difference.

Why is the difference that big ?

UPDATE: I set batch_size=1 in tf.keras.Model.predict and it is now 65x slower than TFLite.

test_tflite.py

import os
import pathlib
import tensorflow as tf
from tensorflow.keras.models import model_from_json
import numpy as np
import time


# disable GPU
tf.config.set_visible_devices([], 'GPU')


parent = pathlib.Path(__file__).parent.absolute()

# path to Tensorflow model and weights
MODEL_PATH = os.path.join(parent, 'models/vd_model.json')
WEIGHTS_PATH = os.path.join(parent, 'models/model.30-0.97.h5')
INPUT_SHAPE = (1, 43, 40, 1)

NUM_RUN = 100


def predict_tflite(interpreter, input_details, output_details, data):
    interpreter.set_tensor(input_details[0]['index'], data)
    interpreter.invoke()
    output_data = interpreter.get_tensor(output_details[0]['index'])
    return output_data


def run():

    # Load Tensorflow model
    with open(MODEL_PATH, 'r') as f:
        model = model_from_json(f.read())
    model.load_weights(WEIGHTS_PATH)

    # Show model
    model.summary()

    # Convert to TFLite
    converter = tf.lite.TFLiteConverter.from_keras_model(model)
    tflite_model = converter.convert()
    interpreter = tf.lite.Interpreter(model_content=tflite_model)
    interpreter.allocate_tensors() 
    input_details = interpreter.get_input_details()
    output_details = interpreter.get_output_details()

    predictions = []
    for i in range(NUM_RUN):

        # fake input data
        data = np.random.rand(*INPUT_SHAPE).astype(np.float32)

        # Tensorflow
        start_time = time.time()
        prediction = model.predict(data, batch_size=1)
        elapsed = time.time() - start_time

        # Tensoflow Lite
        start_time = time.time()
        prediction_tflite = predict_tflite(interpreter, input_details, output_details, data)
        elapsed_tflite = time.time() - start_time

        predictions.append(((elapsed, prediction), (elapsed_tflite, prediction_tflite)))

    # Make sure predictions are close
    for pred_tf, pred_tflite in predictions:
        if not np.all(np.isclose(pred_tf[1], pred_tflite[1])):
              print('Predictions are not close')

    # Compute average execution times
    tf_avg = np.mean([p[0] for p, _ in predictions])
    tflite_avg = np.mean([p[0] for _, p in predictions])

    print(f'TF: {tf_avg:.6f}')
    print(f'TFLite: {tflite_avg:.6f}')


if __name__ == "__main__":
    run()

Execution (Raspberry Pi):

pi@raspberrypi:~/src/audio_monitoring/audio_monitoring/tests $ python3 test_tflite.py 
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 43, 40, 16)        160       
_________________________________________________________________
batch_normalization (BatchNo (None, 43, 40, 16)        64        
_________________________________________________________________
activation (Activation)      (None, 43, 40, 16)        0         
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 22, 20, 16)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 22, 20, 32)        4640      
_________________________________________________________________
batch_normalization_1 (Batch (None, 22, 20, 32)        128       
_________________________________________________________________
activation_1 (Activation)    (None, 22, 20, 32)        0         
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 1, 1, 32)          0         
_________________________________________________________________
dropout (Dropout)            (None, 1, 1, 32)          0         
_________________________________________________________________
flatten (Flatten)            (None, 32)                0         
_________________________________________________________________
dense (Dense)                (None, 4)                 132       
=================================================================
Total params: 5,124
Trainable params: 5,028
Non-trainable params: 96
_________________________________________________________________

TF average prediction time: 0.168310s
TFLite average prediction time: 0.002269s
jul
  • 36,404
  • 64
  • 191
  • 318
  • 1
    `model(x)` might be faster and stabler; see [here](https://stackoverflow.com/questions/60267911/keras-inconsistent-prediction-time/60307121#60307121) – OverLordGoldDragon May 25 '20 at 13:51

1 Answers1

3

There can be many reasons behind this performance difference, but to summarize:

  • At TFLite model conversion time, some graph optimizations are applied (constant folding, op fusing, etc.)
  • At conversion time, the static execution plan is determined ahead of time.
  • Even for CPU, TFLite often provides optimized kernel implementation for a specific CPU architecture (e.g., NEON on ARM).

That being said, not all TensorFlow models can be converted to TFLite, since TFLite only supports a subset of TensorFlow supported ops.

I think you'd find this tech talk interesting. Please have a look.

https://www.youtube.com/watch?v=gHN0jDbJz8E

yyoon
  • 3,555
  • 3
  • 21
  • 17