i am declaring an array that should print both strings and float types in my output of featuring matrix but it's only displaying 1st letter of each What should i change to display my full words output i don't want to have only one words in the output as it can be seen like i want proper table with strings displayed in their respective columns here's my code:
import cv2
import skimage.feature
import numpy as np
import pandas as pd
Image1 = cv2.imread("lab12.tif", 0)
GLCM_Image1 = skimage.feature.greycomatrix(Image1, [1], [0])
# w, h = 4, 7
# feature_matrix = [[0 for x in range(w)] for y in range(h)]
feature_matrix = np.zeros([4, 7],dtype = str)
feature_matrix[0,0] = ""
feature_matrix[0,1] = 'contrast'
feature_matrix[0,2] = 'dissimilarity'
feature_matrix[0,3] = 'homogeneity'
feature_matrix[0,4] = 'energy'
feature_matrix[0,5] = 'correlation'
feature_matrix[0,6] = 'ASM'
feature_matrix[1,0] = 'Image 1'
feature_matrix[2,0] = 'Image 2'
feature_matrix[3,0] = 'Image 3'
print("IMAGE 1 PROPERTIES:")
contrast1 = skimage.feature.greycoprops(GLCM_Image1, prop='contrast')[0][0]
print("Image 1 contrast", contrast1)
feature_matrix[1,1] = str(contrast1)
dissimilarity1 = skimage.feature.greycoprops(GLCM_Image1, prop='dissimilarity')[0][0]
print("Image 1 dissimilarity", dissimilarity1)
feature_matrix[1,2] = str(dissimilarity1)
homogeneity1 = skimage.feature.greycoprops(GLCM_Image1, prop='homogeneity')[0][0]
print("Image 1 homogeneity", homogeneity1)
feature_matrix[1,3] = str(homogeneity1)
energy1 = skimage.feature.greycoprops(GLCM_Image1, "energy")[0][0]
print("Image 1 energy", energy1)
feature_matrix[1,4] = str(energy1)
correlation1 = skimage.feature.greycoprops(GLCM_Image1, "correlation")[0][0]
print("Image 1 correlation", correlation1)
feature_matrix[1,5] = str(correlation1)
ASM1 = skimage.feature.greycoprops(GLCM_Image1, "ASM")[0][0]
print("Image 1 ASM", ASM1)
feature_matrix[1,6] = str(ASM1)
Image2 = cv2.imread("lab12a.tif", 0)
GLCM_Image2 = skimage.feature.greycomatrix(Image2, [1], [0])
print("\nIMAGE 2 PROPERTIES:")
contrast2 = skimage.feature.greycoprops(GLCM_Image2, "contrast")[0][0]
print("Image 2 contrast", contrast2)
feature_matrix[2,1] = str(contrast2)
dissimilarity2 = skimage.feature.greycoprops(GLCM_Image2, "dissimilarity")[0][0]
print("Image 2 dissimilarity", dissimilarity2)
feature_matrix[2,2] = str(dissimilarity2)
homogeneity2 = skimage.feature.greycoprops(GLCM_Image2, "homogeneity")[0][0]
print("Image 2 homogeneity", homogeneity2)
feature_matrix[2,3] = str(homogeneity2)
energy2 = skimage.feature.greycoprops(GLCM_Image2, "energy")[0][0]
print("Image 2 energy", energy2)
feature_matrix[2,4]= str(energy2)
correlation2 = skimage.feature.greycoprops(GLCM_Image2, "correlation")[0][0]
print("Image 2 correlation", correlation2)
feature_matrix[2,5] = str(correlation2)
ASM2 = skimage.feature.greycoprops(GLCM_Image2, "ASM")[0][0]
print("Image 2 ASM", ASM2)
feature_matrix[2,6] = str(ASM2)
Image3 = cv2.imread("lab12(b).tif", 0)
GLCM_Image3 = skimage.feature.greycomatrix(Image3, [1], [0])
print("\nIMAGE 3 PROPERTIES:")
contrast3 = skimage.feature.greycoprops(GLCM_Image3, "contrast")[0][0]
print("Image 3 contrast", contrast3)
feature_matrix[3,1] = str(contrast3)
dissimilarity3 = skimage.feature.greycoprops(GLCM_Image3, "dissimilarity")[0][0]
print("Image 3 dissimilarity", dissimilarity3)
feature_matrix[3,2] = str(dissimilarity3)
homogeneity3 = skimage.feature.greycoprops(GLCM_Image3, "homogeneity")[0][0]
print("Image 3 homogeneity", homogeneity3)
feature_matrix[3,3] = str(homogeneity3)
energy3 = skimage.feature.greycoprops(GLCM_Image3, "energy")[0][0]
print("Image 3 energy", energy3)
feature_matrix[3,4] = str(energy3)
correlation3 = skimage.feature.greycoprops(GLCM_Image3, "correlation")[0][0]
print("Image 3 correlation", correlation3)
feature_matrix[3,5] = str(correlation3)
ASM3 = skimage.feature.greycoprops(GLCM_Image3, "ASM")[0][0]
print("Image 3 ASM", ASM3)
feature_matrix[3,6] = str(ASM3)
print("\nFeature Matrix:")
pd.options.display.float_format = "{:,.2f}".format
print(pd.DataFrame(data=feature_matrix[1:,1:],
index=feature_matrix[1:,0],
columns=feature_matrix[0,1:]))
here's my output: output