I'm writing a signal generator app in Java and one of functionality is to generate a signal which is noise with gaussian distribution. My current implementation for returning values of this class is folowing:
import java.util.Random;
public class FormulaGaussianDistributionNoise extends Formula {
private Double stdEv;
private Random r;
public FormulaGaussianDistributionNoise(Double stdEv) {
this.stdEv = stdEv;
this.r = new Random();
}
@Override
public Double value(Double x) {
return stdEv*r.nextGaussian();
}
}
When I generate ie. 10secs signal with 100Hz sampling im getting preety nice gaussian noise signal which looks like this: Great gaussian signal
However the problem is that i want my signal to become DETERMINISTIC once generated. As probably many of you noticed, class that I prepared will return two different values if called twice with the same argument. I want to achieve that my method value(Double x)
of FormulaGaussianDistributionNoise
object called with the same argument returns always the same value.
What I've tried so far was using method setSeed(long x)
of the Random
class, in each call of the value(Double x)
. My class then looked like this:
public class FormulaGaussianDistributionNoise extends Formula {
private Double stdEv;
private Random r;
private long seed;
public FormulaGaussianDistributionNoise(Double stdEv) {
this.stdEv = stdEv;
this.seed = System.currentTimeMillis();
this.r = new Random(seed);
}
@Override
public Double value(Double x) {
//Generate new seed based on the double value
long newSeed = Double.doubleToRawLongBits(x);
r.setSeed(this.seed ^ newSeed);
return stdEv*r.nextGaussian();
}
}
this.seed
atribute of the class is used to make objects of this class different between each others. On value(x)
call i set the new seed for the Random
object as bits xor of this,seed
and x
. So it always sets the same seed for the r
object if called with the same x
, so nextGaussian()
always returns the same value. Problem is that that actually those values often repeats and signal does not look like gaussian anymore:
Great NO-gaussian signal
I've digged a bit deeper into this and implementation of setSeed(long seed)
of Random
class looks like following:
/**
* Sets the seed of this random number generator using a single
* {@code long} seed. The general contract of {@code setSeed} is
* that it alters the state of this random number generator object
* so as to be in exactly the same state as if it had just been
* created with the argument {@code seed} as a seed. The method
* {@code setSeed} is implemented by class {@code Random} by
* atomically updating the seed to
* <pre>{@code (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1)}</pre>
* and clearing the {@code haveNextNextGaussian} flag used by {@link
* #nextGaussian}.
*
* <p>The implementation of {@code setSeed} by class {@code Random}
* happens to use only 48 bits of the given seed. In general, however,
* an overriding method may use all 64 bits of the {@code long}
* argument as a seed value.
*
* @param seed the initial seed
*/
synchronized public void setSeed(long seed) {
this.seed.set(initialScramble(seed));
haveNextNextGaussian = false;
}
private static long initialScramble(long seed) {
return (seed ^ multiplier) & mask;
}
private static final long multiplier = 0x5DEECE66DL;
private static final long mask = (1L << 48) - 1;
As you can see method setSeed(long seed)
is setting seed as some initialScramble(seed)
which actually uses only 48-bits of my 64-bit seed. When i scramble my seeds like that I'm actually often getting the same seed:
this.seed x newSeed this.seed^newSeed [y] initialScramble(y)
1590082351125 0.0 0 1590082351125 1614482495096
1590082351125 0.25 4598175219545276416 4598176809627627541 1614482495096
1590082351125 0.5 4602678819172646912 4602680409254998037 1614482495096
1590082351125 0.75 4604930618986332160 4604932209068683285 1614482495096
1590082351125 1.0 4607182418800017408 4607184008882368533 1614482495096
1590082351125 1.25 4608308318706860032 4608309908789211157 1614482495096
1590082351125 1.5 4609434218613702656 4609435808696053781 1614482495096
1590082351125 1.75 4610560118520545280 4610561708602896405 1614482495096
1590082351125 2.0 4611686018427387904 4611687608509739029 1614482495096
1590082351125 2.25 4612248968380809216 4612250558463160341 1614482495096
1590082351125 2.5 4612811918334230528 4612813508416581653 1614482495096
1590082351125 2.75 4613374868287651840 4613376458370002965 1614482495096
1590082351125 3.0 4613937818241073152 4613939408323424277 1614482495096
1590082351125 3.25 4614500768194494464 4614502358276845589 1614482495096
1590082351125 3.5 4615063718147915776 4615065308230266901 1614482495096
1590082351125 3.75 4615626668101337088 4615628258183688213 1614482495096
1590082351125 4.0 4616189618054758400 4616191208137109525 1614482495096
1590082351125 4.25 4616471093031469056 4616472683113820181 1614482495096
1590082351125 4.5 4616752568008179712 4616754158090530837 1614482495096
1590082351125 4.75 4617034042984890368 4617035633067241493 1614482495096
1590082351125 5.0 4617315517961601024 4617317108043952149 1614482495096
1590082351125 5.25 4617596992938311680 4617598583020662805 1614482495096
1590082351125 5.5 4617878467915022336 4617880057997373461 1614482495096
1590082351125 5.75 4618159942891732992 4618161532974084117 1614482495096
1590082351125 6.0 4618441417868443648 4618443007950794773 1614482495096
1590082351125 6.25 4618722892845154304 4618724482927505429 1614482495096
1590082351125 6.5 4619004367821864960 4619005957904216085 1614482495096
1590082351125 6.75 4619285842798575616 4619287432880926741 1614482495096
1590082351125 7.0 4619567317775286272 4619568907857637397 1614482495096
1590082351125 7.25 4619848792751996928 4619850382834348053 1614482495096
1590082351125 7.5 4620130267728707584 4620131857811058709 1614482495096
1590082351125 7.75 4620411742705418240 4620413332787769365 1614482495096
1590082351125 8.0 4620693217682128896 4620694807764480021 1614482495096
1590082351125 8.5 4620974692658839552 4620976282741190677 1614482495096
1590082351125 9.0 4621256167635550208 4621257757717901333 1614482495096
1590082351125 9.5 4621537642612260864 4621539232694611989 1614482495096
However overwriting Random
class to get rid of initialScramble
also didn't help. I find that method Random.next()
also uses only 48bits of seed, so this is probably the problem.
/**
* Generates the next pseudorandom number. Subclasses should
* override this, as this is used by all other methods.
*
* <p>The general contract of {@code next} is that it returns an
* {@code int} value and if the argument {@code bits} is between
* {@code 1} and {@code 32} (inclusive), then that many low-order
* bits of the returned value will be (approximately) independently
* chosen bit values, each of which is (approximately) equally
* likely to be {@code 0} or {@code 1}. The method {@code next} is
* implemented by class {@code Random} by atomically updating the seed to
* <pre>{@code (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1)}</pre>
* and returning
* <pre>{@code (int)(seed >>> (48 - bits))}.</pre>
*
* This is a linear congruential pseudorandom number generator, as
* defined by D. H. Lehmer and described by Donald E. Knuth in
* <i>The Art of Computer Programming,</i> Volume 3:
* <i>Seminumerical Algorithms</i>, section 3.2.1.
*
* @param bits random bits
* @return the next pseudorandom value from this random number
* generator's sequence
* @since 1.1
*/
protected int next(int bits) {
long oldseed, nextseed;
AtomicLong seed = this.seed;
do {
oldseed = seed.get();
nextseed = (oldseed * multiplier + addend) & mask;
} while (!seed.compareAndSet(oldseed, nextseed));
return (int)(nextseed >>> (48 - bits));
}
private static final long multiplier = 0x5DEECE66DL;
private static final long addend = 0xBL;
private static final long mask = (1L << 48) - 1;
My questions are: are there Random number generator classes that uses 64 bits of seed, to generate next value? I couldn't find any. Maybe you have idea for different solution to make my value(Double x)
deterministic?