So I am trying to get multiple stock prices using pandas and panadas datareader. If I only try to import one ticker it will run fine, but if I use more than one then an error arises. The code is:
import pandas as pd
import pandas_datareader as web
import datetime as dt
stocks = ['BA', 'AMD']
start = dt.datetime(2018, 1, 1)
end = dt.datetime(2020, 1, 1)
d = web.DataReader(stocks, 'yahoo', start, end)
Though I get the error:
ValueError: Wrong number of items passed 2, placement implies 1
So how do I get around it only allowing to pass 1 stock.
So far I have tried using quandl and google instead, which dont work either. I also have tried pdr.get_data_yahoo
but I get the same result. I have also tried yf.download()
and still get the same issue. Does anyone have any ideas to get around this? Thank you.
EDIT: Full code:
import pandas as pd
import pandas_datareader as web
import datetime as dt
import yfinance as yf
import numpy as np
stocks = ['BA', 'AMD', 'AAPL']
start = dt.datetime(2018, 1, 1)
end = dt.datetime(2020, 1, 1)
d = web.DataReader(stocks, 'yahoo', start, end)
d['sma50'] = np.round(d['Close'].rolling(window=2).mean(), decimals=2)
d['sma200'] = np.round(d['Close'].rolling(window=14).mean(), decimals=2)
d['200-50'] = d['sma200'] - d['sma50']
_buy = -2
d['Crossover_Long'] = np.where(d['200-50'] < _buy, 1, 0)
d['Crossover_Long_Change']=d.Crossover_Long.diff()
d['buy'] = np.where(d['Crossover_Long_Change'] == 1, 'buy', 'n/a')
d['sell'] = np.where(d['Crossover_Long_Change'] == -1, 'sell', 'n/a')
pd.set_option('display.max_rows', 5093)
d.drop(['High', 'Low', 'Close', 'Volume', 'Open'], axis=1, inplace=True)
d.dropna(inplace=True)
#make 2 dataframe
d.set_index(d['Adj Close'], inplace=True)
buy_price = d.index[d['Crossover_Long_Change']==1]
sell_price = d.index[d['Crossover_Long_Change']==-1]
d['Crossover_Long_Change'].value_counts()
profit_loss = (sell_price - buy_price)*10
commision = buy_price*.01
position_value = (buy_price + commision)*10
percent_return = (profit_loss/position_value)*100
percent_rounded = np.round(percent_return, decimals=2)
prices = {
"Buy Price" : buy_price,
"Sell Price" : sell_price,
"P/L" : profit_loss,
"Return": percent_rounded
}
df = pd.DataFrame(prices)
print('The return was {}%, and profit or loss was ${} '.format(np.round(df['Return'].sum(), decimals=2),
np.round(df['P/L'].sum(), decimals=2)))
d