Following the explanation from tutorialspoint, which states, that the basic idea is to implement the Newton Raphson method for solving nonlinear equations, IMHO, the code below displays this fact more clearly. Since there is already an accepted answer, I add this answer just for future reference.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
double rootCube( double a)
{
double x = a;
double y = 1.0;
const double precision = 0.0000001;
while(fabs(x-y) > precision)
{
x = (x + y) / 2.0;
y = a / x / x;
}
return x;
}
int main(int argc, const char* argv[])
{
if(argc > 1)
{
double a =
strtod(argv[1],NULL);
printf("cubeRoot(%f) = %f\n", a, rootCube(a));
}
return 0;
}
Here, in contrast to the original code of the question, it is more obvious, that x
and y
are the bounds, which are being improved until a sufficiently accurate solution is found.
With modification of the line in the while block, where y is being updated, this code can also be used to solve similar equations. For finding the square root, for example, this line would look like this: y = a / x
.