coords score
[1018, 370, 1345, 370, 1345, 699, 1018, 699, 1018, 370] 0.9988
[1344, 366, 1669, 366, 1669, 690, 1344, 690, 1344, 366] 0.9985
[1341, 688, 1669, 688, 1669, 1012, 1341, 1012, 1341, 688] 0.9985
[2643, 49, 2972, 49, 2972, 362, 2643, 362, 2643, 49] 0.9984
[1018, 1020, 1341, 1020, 1341, 1342, 1018, 1342, 1018, 1020] 0.9984
[2321, 371, 2651, 371, 2651, 696, 2321, 696, 2321, 371] 0.9984
[2970, 1018, 3296, 1018, 3296, 1345, 2970, 1345, 2970, 1018] 0.9984
[1016, 696, 1342, 696, 1342, 1011, 1016, 1011, 1016, 696] 0.9984
[697, 371, 1020, 371, 1020, 693, 697, 693, 697, 371] 0.9984
[1341, 1017, 1668, 1017, 1668, 1348, 1341, 1348, 1341, 1017] 0.9984
[2975, 366, 3300, 366, 3300, 686, 2975, 686, 2975, 366] 0.9984
[2319, 701, 2645, 701, 2645, 1017, 2319, 1017, 2319, 701] 0.9984
[2976, 51, 3298, 51, 3298, 363, 2976, 363, 2976, 51] 0.9984
[2645, 1349, 2971, 1349, 2971, 1665, 2645, 1665, 2645, 1349] 0.9983
[2972, 1659, 3295, 1659, 3295, 1991, 2972, 1991, 2972, 1659] 0.9983
[1013, 1343, 1343, 1343, 1343, 1671, 1013, 1671, 1013, 1343] 0.9983
[3298, 47, 3619, 47, 3619, 359, 3298, 359, 3298, 47] 0.9983
[1676, 367, 1999, 367, 1999, 690, 1676, 690, 1676, 367] 0.9983
[2323, 50, 2644, 50, 2644, 366, 2323, 366, 2323, 50] 0.9983
[2000, 371, 2326, 371, 2326, 691, 2000, 691, 2000, 371] 0.9983
[2650, 372, 2971, 372, 2971, 690, 2650, 690, 2650, 372] 0.9983
[2972, 1348, 3298, 1348, 3298, 1664, 2972, 1664, 2972, 1348] 0.9982
[1019, 1671, 1344, 1671, 1344, 1986, 1019, 1986, 1019, 1671] 0.9982
[2648, 1021, 2971, 1021, 2971, 1340, 2648, 1340, 2648, 1021] 0.9982
[695, 690, 1017, 690, 1017, 1015, 695, 1015, 695, 690] 0.9982
[1998, 52, 2323, 52, 2323, 365, 1998, 365, 1998, 52] 0.9982
[1021, 49, 1342, 49, 1342, 361, 1021, 361, 1021, 49] 0.9982
[2317, 1344, 2645, 1344, 2645, 1666, 2317, 1666, 2317, 1344] 0.9982
[1343, 1670, 1667, 1670, 1667, 1988, 1343, 1988, 1343, 1670] 0.9982
[692, 47, 1019, 47, 1019, 364, 692, 364, 692, 47] 0.9982
[370, 370, 695, 370, 695, 695, 370, 695, 370, 370] 0.9981
[1344, 1347, 1674, 1347, 1674, 1673, 1344, 1673, 1344, 1347] 0.9981
[1670, 53, 1992, 53, 1992, 369, 1670, 369, 1670, 53] 0.9981
[1345, 51, 1667, 51, 1667, 365, 1345, 365, 1345, 51] 0.9981
[3301, 364, 3623, 364, 3623, 692, 3301, 692, 3301, 364] 0.9981
[2646, 692, 2973, 692, 2973, 1014, 2646, 1014, 2646, 692] 0.9981
[1672, 689, 1995, 689, 1995, 1015, 1672, 1015, 1672, 689] 0.9981
[374, 696, 695, 696, 695, 1017, 374, 1017, 374, 696] 0.9980
[1994, 695, 2323, 695, 2323, 1022, 1994, 1022, 1994, 695] 0.9980
[2321, 1667, 2645, 1667, 2645, 1993, 2321, 1993, 2321, 1667] 0.9980
[3300, 694, 3619, 694, 3619, 1016, 3300, 1016, 3300, 694] 0.9980
[372, 1021, 694, 1021, 694, 1337, 372, 1337, 372, 1021] 0.9980
[370, 1671, 691, 1671, 691, 1991, 370, 1991, 370, 1671] 0.9979
[2641, 1671, 2971, 1671, 2971, 1985, 2641, 1985, 2641, 1671] 0.9979
[2315, 1017, 2644, 1017, 2644, 1343, 2315, 1343, 2315, 1017] 0.9979
[694, 1022, 1016, 1022, 1016, 1339, 694, 1339, 694, 1022] 0.9979
[2000, 1672, 2322, 1672, 2322, 1994, 2000, 1994, 2000, 1672] 0.9978
[367, 50, 690, 50, 690, 365, 367, 365, 367, 50] 0.9978
[371, 1339, 692, 1339, 692, 1671, 371, 1671, 371, 1339] 0.9978
[691, 1341, 1016, 1341, 1016, 1668, 691, 1668, 691, 1341] 0.9977
[1996, 1350, 2319, 1350, 2319, 1675, 1996, 1675, 1996, 1350] 0.9977
[1673, 1020, 1996, 1020, 1996, 1348, 1673, 1348, 1673, 1020] 0.9976
[692, 1670, 1019, 1670, 1019, 1989, 692, 1989, 692, 1670] 0.9976
[2000, 1023, 2322, 1023, 2322, 1349, 2000, 1349, 2000, 1023] 0.9976
[1675, 1347, 1995, 1347, 1995, 1671, 1675, 1671, 1675, 1347] 0.9975
[3295, 1344, 3618, 1344, 3618, 1673, 3295, 1673, 3295, 1344] 0.9975
[1673, 1671, 1992, 1671, 1992, 1989, 1673, 1989, 1673, 1671] 0.9975
[3297, 1017, 3617, 1017, 3617, 1340, 3297, 1340, 3297, 1017] 0.9974
[3300, 1673, 3622, 1673, 3622, 1990, 3300, 1990, 3300, 1673] 0.9973
[3620, 51, 3940, 51, 3940, 361, 3620, 361, 3620, 51] 0.9972
[3625, 368, 3947, 368, 3947, 689, 3625, 689, 3625, 368] 0.9969
[3622, 699, 3944, 699, 3944, 1013, 3622, 1013, 3622, 699] 0.9969
[43, 697, 371, 697, 371, 1011, 43, 1011, 43, 697] 0.9967
[43, 1021, 372, 1021, 372, 1342, 43, 1342, 43, 1021] 0.9966
[3622, 1667, 3942, 1667, 3942, 1990, 3622, 1990, 3622, 1667] 0.9961
[3619, 1021, 3938, 1021, 3938, 1339, 3619, 1339, 3619, 1021] 0.9960
[45, 378, 372, 378, 372, 689, 45, 689, 45, 378] 0.9959
[3623, 1348, 3946, 1348, 3946, 1671, 3623, 1671, 3623, 1348] 0.9958
[46, 1667, 372, 1667, 372, 1989, 46, 1989, 46, 1667] 0.9957
[41, 1351, 367, 1351, 367, 1671, 41, 1671, 41, 1351] 0.9957
[43, 49, 370, 49, 370, 362, 43, 362, 43, 49] 0.9957
[2972, 695, 3299, 695, 3299, 1011, 2972, 1011, 2972, 695] 0.9638
Here is the DataFrame that I have. There are 72 rows x 2 columns. (The above DataFrame is the snippet of the DataFrame. If you count the number of cells in this Electroluminescence (EL) image of a solar module you'll note that it has 72 photovoltaic cells.
Column 'coords' has the co-ordinates of the each polygon segment in the image.
Column 'score' is the accuracy score of the tile ( whether placed in the desired position ) corresponding to the co ordinates. The score is not important but is an output of the model.
Let me explain where these polycoordinate segmentations are coming from...
I have designed an image segmentation model which outputs the coordinate arrays above but I have been asked to tag each segmented cell with a an (x,y) identity.
The image segmentation model has no concept of location so the initial result set is sorted by the probability that a cell has been correctly identified.
Now consider the top left tile as (0,0), Move to the right one cell and that will be tagged as (0,1). Move down 1 cell from there and you would tag that cell (1,1) etc...
Basically: How can I process these poly coordinates and end up with the (x,y) identity of each cell?