I am building a Shiny application in which a large ggplot2 fortified dataframe needs to be calculated over and over again, using a large amount of external source files. I am searching for the fastest and most efficient way to do this. In the following paragraph I will delve a little bit more into the subject and the code I have so far and also provide the input data to enable your kind assistance.
I am using the Helsinki Region Travel Time Matrix 2018, a dataset provided by Digital Geography Lab, a research group in the University of Helsinki. This data uses a generalised map of Helsinki capital region, in 250 x 250 meter cells (in my code grid_f
), to calculate travel times between all cells in the map (grid ids are called YKR_ID
, n=13231) by public transport, private car, bicycle and by foot. The calculations are stored in delimited .txt files, one text file for all the travel times to a specific cell id. The data is available for download at this website, under "Download the data". NB, the unzipped data is 13.8 GB in size.
Here is a selection from a text file in the dataset:
from_id;to_id;walk_t;walk_d;bike_s_t;bike_f_t;bike_d;pt_r_tt;pt_r_t;pt_r_d;pt_m_tt;pt_m_t;pt_m_d;car_r_t;car_r_d;car_m_t;car_m_d;car_sl_t
5785640;5785640;0;0;-1;-1;-1;0;0;0;0;0;0;-1;0;-1;0;-1
5785641;5785640;48;3353;51;32;11590;48;48;3353;48;48;3353;22;985;21;985;16
5785642;5785640;50;3471;51;32;11590;50;50;3471;50;50;3471;22;12167;21;12167;16
5785643;5785640;54;3764;41;26;9333;54;54;3764;54;54;3764;22;10372;21;10370;16
5787544;5785640;38;2658;10;7;1758;38;38;2658;38;38;2658;7;2183;7;2183;6
My interest is to visualise (with ggplot2
) this 250x250m Helsinki region map for one travel mode, the private car, using any of the possible 13231 cell ids, repeatedly if the user wants. Because of this it is important that the dataframe fetch is as fast and efficient as possible. For this question, let's concentrate on the fetching and processing of the data from the external files and use only one specific id value.
In a nutshell, After I have produced a ggplot2::fortify()
version of the 250 x 250 meter grid spatial dataset grid_f
,
- I need to scan through all the 13231 Travel Time Matrix 2018 text files
- Pick only the relevant columns (
from_id
,to_id
,car_r_t
,car_m_t
,car_sl_t
) in each file - Pick the relevant row using
from_id
(in this case,origin_id <- "5985086"
) in each file - Join the the resulting row to the fortified spatial data
grid_f
My code is as follows:
# Libraries
library(ggplot2)
library(dplyr)
library(rgdal)
library(data.table)
library(sf)
library(sp)
# File paths. ttm_path is the folder which contains the unchanged Travel
# Time Matrix 2018 data from the research group's home page
ttm_path <- "HelsinkiTravelTimeMatrix2018"
gridpath <- "MetropAccess_YKR_grid_EurefFIN.shp"
#### Import grid cells
# use this CRS information throughout the app
app_crs <- sp::CRS("+init=epsg:3067")
# Read grid shapefile and transform
grid_f <- rgdal::readOGR(gridpath, stringsAsFactors = TRUE) %>%
sp::spTransform(., app_crs) %>%
# preserve grid dataframe data in the fortify
{dplyr::left_join(ggplot2::fortify(.),
as.data.frame(.) %>%
dplyr::mutate(id = as.character(dplyr::row_number() - 1)))} %>%
dplyr::select(-c(x, y))
The code above this point is meant to run only once. The code below, more or less, would be run over and over with different origin_id
s.
#### Fetch TTM18 data
origin_id <- "5985086"
origin_id_num <- as.numeric(origin_id)
# column positions of columns from_id, to_id, car_r_t, car_m_t, car_sl_t
col_range <- c(1, 2, 14, 16, 18)
# grid_f as data.table version
dt_grid <- as.data.table(grid_f)
# Get filepaths of all of the TTM18 data. Remove metadata textfile filepath.
all_files <- list.files(path = ttm_path,
pattern = ".txt$",
recursive = TRUE,
full.names = TRUE)
all_files <- all_files[-length(all_files)]
# lapply function
TTM18_fetch <- function(x, col_range, origin_id) {
res <- fread(x, select = col_range)
res <- subset(res, from_id == origin_id)
return(res)
}
# The part of the code that needs to be fast and efficient
result <-
lapply(all_files, FUN = TTM18_fetch, col_range, origin_id_num) %>%
data.table::rbindlist(., fill = TRUE) %>%
data.table::merge.data.table(dt_grid, ., by.x = "YKR_ID", by.y = "to_id")
The dataframe result
should have 66155 rows of 12 variables, five rows for each 250x250 meter grid cell. The columns are YKR_ID
, long
, lat
, order
, hole
, piece
, id
, group
, from_id
, car_r_t
, car_m_t
, car_sl_t
.
My current lapply()
and data.table::fread()
solution takes about 2-3 minutes to complete. I think this is already a good achievement, but I can't help and think there are better and faster ways to complete this. So far, I have tried these alternatives to what I now have:
- A conventional for loop: that was obviously a slow solution
- I tried to teach myself more about vectorised functions in R, but that did not lead anywhere. Used this link
- Tried to dabble with
with()
unsuccessfully using this SO question, inspired by this SO question - Looked into package
parallel
but ended up not utilising that because of the Windows environment I am using - Tried to find alternative ways to solve this with
apply()
andsapply()
but nothing noteworthy came out of that.
As to why I didn't do all this to the data before ggplot2::fortify
, I simply found it troublesome to work with a SpatialPolygonsDataFrame.
Thank you for your time.