The first part is what I want to do and the questions. Before discussing why I want to to that and proposing counterarguments, please read the motivation in the second part.
In short: I am not a developer. The main use of Python is fast prototyping of mathematical methods; additional motivation is learning how Python is implemented. This topic is not of crucial importance for me. If it seems lame and off-topic, feel free to remove, and I apologize for the inconvenience.
This feature does not introduce new functionality but serves as a shortcut for lambda
.
The idea is borrowed from wolfram-language.
If the symbol of closing parenthesis is preceded with &
, then the code inside the parentheses is interpreted as the definition of a function, where `1
, `2
, ... play the role of its arguments.
Example: (`1 + `2 &)(a, b)
means (lambda x, y: x + y)(a, b)
Provided that I learn everything needed about Python, how hard / time consuming is to implement that extension? At the moment, I see two options:
1.a. Preprocessing text of the script before compiling (I use iPython in Anaconda).
Immediate problem: assigning unique names to arguments. Possible workaround: reserve names such as__my_lambda_123
.1.b. Modifying CPython similarly as described in https://hackernoon.com/modifying-the-python-language-in-7-minutes-b94b0a99ce14
Imagine that I implemented that feature correctly. Do you immediately see that it breaks something essential in Python, or iPython, or Anaconda? Assume that I do not use any developers' packages such as
unittest
, but a lot of "scientific" packages includingnumpy
, as well as "interface" packages such assqlalchemy
.
Motivation. I gradually study Python as a programming language and appreciate its deepness, consistency and unique philosophy. I understand that my idea is not in line with the latter. However, I use Python for implementing mathematical methods which are barely reusable. A typical life cycle is following: (1) implement some mathematical method and experiments for a research project; (1.a) maybe save some function/class in my package if it feels reusable; (2) conduct computational experiments; (3) publish a paper; (4) never use the code again. It is much easier to implement an algorithm from scratch than to structure and reuse the code since the coincidence between large parts of different methods is very rare.
My typical project is one large Python script with long code fragments. Even structuring the code into functions is not time-efficient, since the life cycle of my program does not include "deploy", "maintain", "modify". I keep the amount of structure to a minimum needed for fast implementing and debugging.
I would use wolfram-mathematica but in my recent projects, it became useless due to the limitations of its standard libraries, the poor performance of the code in Wolfram language, and overall closeness of the platform. I switch to Python for its rich selection of libraries, and also with the intent of acquiring some software developer's skills. However, at the moment, programming in the Wolfram language style is much more efficient for me. The code of algorithms feels much more readable when it is more compact (you do not need to scroll), and includes less language-specific words such as lambda
.