I have a made a planet and wanted to make an atmosphere around it. So I was referring to this site:
I don't understand this:
As with the lookup table proposed in Nishita et al. 1993, we can get the optical depth for the ray to the sun from any sample point in the atmosphere. All we need is the height of the sample point (x) and the angle from vertical to the sun (y), and we look up (x, y) in the table. This eliminates the need to calculate one of the out-scattering integrals. In addition, the optical depth for the ray to the camera can be figured out in the same way, right? Well, almost. It works the same way when the camera is in space, but not when the camera is in the atmosphere. That's because the sample rays used in the lookup table go from some point at height x all the way to the top of the atmosphere. They don't stop at some point in the middle of the atmosphere, as they would need to when the camera is inside the atmosphere.
Fortunately, the solution to this is very simple. First we do a lookup from sample point P to the camera to get the optical depth of the ray passing through the camera to the top of the atmosphere. Then we do a second lookup for the same ray, but starting at the camera instead of starting at P. This will give us the optical depth for the part of the ray that we don't want, and we can subtract it from the result of the first lookup. Examine the rays starting from the ground vertex (B 1) in Figure 16-3 for a graphical representation of this.
First Question - isn't optical depth dependent on how you see that is, on the viewing angle? If yes, the table just gives me the optical depth of the rays going from land to the top of the atmosphere in a straight line. So what about the case where the rays pierce the atmosphere to reach the camera? How do I get the optical depth in this case?
Second Question - What is the vertical angle it is talking about...like, is it the same as the angle with the z-axis as we use in polar coordinates?
Third Question - The article talks about scattering of the rays going to the sun..shouldn't it be the other way around? like coming from the sun to a point?
Any explanation on the article or on my questions will help a lot.
Thanks in advance!