1

I want to extract tables from a bunch of PDFs I have. To do this I am using AWS Textract Python pipeline.

Please advise how can I do this without SNS and SQS? I want it to be synchronous: provide my pipeline a PDF file, call AWS Textract and get the results.

Here is what I use meanwhile, please advise what should I change:

import boto3
import time

def startJob(s3BucketName, objectName):
    response = None
    client = boto3.client('textract')
    response = client.start_document_text_detection(
    DocumentLocation={
        'S3Object': {
            'Bucket': s3BucketName,
            'Name': objectName
        }
    })

    return response["JobId"]

def isJobComplete(jobId):
    # For production use cases, use SNS based notification 
    # Details at: https://docs.aws.amazon.com/textract/latest/dg/api-async.html
    time.sleep(5)
    client = boto3.client('textract')
    response = client.get_document_text_detection(JobId=jobId)
    status = response["JobStatus"]
    print("Job status: {}".format(status))

    while(status == "IN_PROGRESS"):
        time.sleep(5)
        response = client.get_document_text_detection(JobId=jobId)
        status = response["JobStatus"]
        print("Job status: {}".format(status))

    return status

def getJobResults(jobId):

    pages = []

    client = boto3.client('textract')
    response = client.get_document_text_detection(JobId=jobId)

    pages.append(response)
    print("Resultset page recieved: {}".format(len(pages)))
    nextToken = None
    if('NextToken' in response):
        nextToken = response['NextToken']

    while(nextToken):

        response = client.get_document_text_detection(JobId=jobId, NextToken=nextToken)

        pages.append(response)
        print("Resultset page recieved: {}".format(len(pages)))
        nextToken = None
        if('NextToken' in response):
            nextToken = response['NextToken']

    return pages

# Document
s3BucketName = "ki-textract-demo-docs"
documentName = "Amazon-Textract-Pdf.pdf"

jobId = startJob(s3BucketName, documentName)
print("Started job with id: {}".format(jobId))
if(isJobComplete(jobId)):
    response = getJobResults(jobId)

#print(response)

# Print detected text
for resultPage in response:
    for item in resultPage["Blocks"]:
        if item["BlockType"] == "LINE":
            print ('\033[94m' +  item["Text"] + '\033[0m')
John Rotenstein
  • 241,921
  • 22
  • 380
  • 470
SteveS
  • 3,789
  • 5
  • 30
  • 64

2 Answers2

2

You cannot directly process PDF documents synchronously with Textract currently. From the Textract documentation:

Amazon Textract synchronous operations (DetectDocumentText and AnalyzeDocument) support the PNG and JPEG image formats. Asynchronous operations (StartDocumentTextDetection, StartDocumentAnalysis) also support the PDF file format.

A work-around would be to convert the PDF document into images in your code and then use the synchronous API operations with these images to process the documents.

Paradigm
  • 1,876
  • 1
  • 12
  • 16
  • Just be careful if you follow the pdf2image route. I have had errors in the extraction process due to low dpi jpg files. – Daniel Oct 02 '20 at 21:50
0

Thanks for the answers and, those answers helped me to analyse more on this. I found that detect_document_text method in Textract can be used for PDF document text extraction with a condition that the PDF document should have only one page. This is a synchronous process. We do not have to convert the pdf to image at all.

This is the link from AWS for the reference . https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/textract/client/detect_document_text.html

Below is the code snippet, where i am passing the binary content from S3 object

obj = bucket.Object('Test.pdf') 
binary_file = obj.get().get('Body').read()

textract = boto3.client(service_name = "textract",region_name = "us-east-1")

def get_textract_response(file_content):
    response = None
    try:
        response = textract.detect_document_text(Document={'Bytes': file_content})
        logger.info(f"Detected {len(response['Blocks'])} blocks.")
    except ClientError:
        logger.exception("Couldn't detect text.")
        response = "Uncertain"

    except BaseException:
        logger.info("textract could not detect text")
        response = "Uncertain"
                    
    else:
        return response
    
response = get_textract_response(binary_file)
Soumya
  • 181
  • 1
  • 6