I'm tring to use CNN to classifiy 3 classes data, every data is 30*188. Class1 has 5794 data, class2 has 8471, class3 has 9092. When I train my model, the value of accuracy, loss , val_acc and val_loss don't change. Please help me to solve this problem.
import glob
import os
import librosa
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import specgram
import librosa.display
import sklearn
from keras.utils import to_categorical
import scipy.io as scio
path1 = 'class1_feature_array.mat'
data1 = scio.loadmat(path1)
class1_feature_array = data1['class1_feature_array']
class1_label = np.zeros((class1_feature_array.shape[0],))
class1_label=class1_label.astype(np.int32)
class1_label=class1_label.astype(np.str)
path2 = 'class2_feature_array.mat'
data2 = scio.loadmat(path2)
class2_feature_array = data2['class2_feature_array']
class2_label = np.ones((class2_feature_array.shape[0],))
class2_label=class2_label.astype(np.int32)
class2_label=class2_label.astype(np.str)
path3 = 'class3_feature_array.mat'
data3 = scio.loadmat(path3)
class3_feature_array = data3['class3_feature_array']
class3_label = np.ones((class3_feature_array.shape[0],))*2
class3_label=class3_label.astype(np.int32)
class3_label=class3_label.astype(np.str)
features, labels = np.empty((0,40,188)), np.empty(0)
features = np.append(features,class1_feature_array,axis=0)
features = np.append(features,class2_feature_array,axis=0)
features = np.append(features,class3_feature_array,axis=0)
features = np.array(features)
labels = np.append(labels,class1_label,axis=0)
labels = np.append(labels,class2_label,axis=0)
labels = np.append(labels,class3_label,axis=0)
labels = np.array(labels, dtype = np.int)
def one_hot_encode(labels):
n_labels = len(labels)
n_unique_labels = len(np.unique(labels))
one_hot_encode = np.zeros((n_labels,n_unique_labels))
print("one_hot_encode",one_hot_encode.shape)
one_hot_encode[np.arange(n_labels), labels] = 1
return one_hot_encode
labels = one_hot_encode(labels)
train_test_split = np.random.rand(len(features)) < 0.80
train_x = features[train_test_split]
train_y = labels[train_test_split]
test_x = features[~train_test_split]
test_y = labels[~train_test_split]
train_x = train_x.reshape(train_x.shape[0],train_x.shape[1],train_x.shape[2],1)
test_x = test_x.reshape(test_x.shape[0],test_x.shape[1],test_x.shape[2],1)
import sklearn
import keras
from keras.models import Sequential
from keras.layers import *
from keras.callbacks import LearningRateScheduler
from keras import optimizers
#LeNet
model = Sequential()
model.add(Conv2D(32,(5, 5),strides=(1,1),padding='valid',activation='relu',input_shape=(40,188,1),kernel_initializer='uniform'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64,(5,5),strides=(1,1),padding='valid',activation='relu',kernel_initializer='uniform'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(100,activation='relu'))
model.add(Dense(3, activation='softmax'))
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd,
loss='binary_crossentropy',
metrics=['accuracy'])
model.summary(line_length=80)
history = model.fit(train_x, train_y, epochs=100, batch_size=32, validation_data=(test_x, test_y))
The output after training is as shown below:
Train on 18625 samples, validate on 4732 samples
Epoch 1/100
18625/18625 [==============================] - 30s 2ms/step - loss: 8.0138 - accuracy: 0.5001 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 2/100
18625/18625 [==============================] - 22s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 3/100
18625/18625 [==============================] - 23s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 4/100
18625/18625 [==============================] - 24s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 5/100
18625/18625 [==============================] - 23s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 6/100
18625/18625 [==============================] - 24s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 7/100
18625/18625 [==============================] - 24s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 8/100
18625/18625 [==============================] - 25s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 9/100
18625/18625 [==============================] - 26s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 10/100
18625/18625 [==============================] - 25s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 11/100
18625/18625 [==============================] - 26s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944
Epoch 12/100
18625/18625 [==============================] - 26s 1ms/step - loss: 8.0181 - accuracy: 0.4998 - val_loss: 8.1055 - val_accuracy: 0.4944