I'm attempting to write a simple buffer overflow using C on Mac OS X 10.6 64-bit. Here's the concept:
void function() {
char buffer[64];
buffer[offset] += 7; // i'm not sure how large offset needs to be, or if
// 7 is correct.
}
int main() {
int x = 0;
function();
x += 1;
printf("%d\n", x); // the idea is to modify the return address so that
// the x += 1 expression is not executed and 0 gets
// printed
return 0;
}
Here's part of main's assembler dump:
...
0x0000000100000ebe <main+30>: callq 0x100000e30 <function>
0x0000000100000ec3 <main+35>: movl $0x1,-0x8(%rbp)
0x0000000100000eca <main+42>: mov -0x8(%rbp),%esi
0x0000000100000ecd <main+45>: xor %al,%al
0x0000000100000ecf <main+47>: lea 0x56(%rip),%rdi # 0x100000f2c
0x0000000100000ed6 <main+54>: callq 0x100000ef4 <dyld_stub_printf>
...
I want to jump over the movl
instruction, which would mean I'd need to increment the return address by 42 - 35 = 7 (correct?). Now I need to know where the return address is stored so I can calculate the correct offset.
I have tried searching for the correct value manually, but either 1 gets printed or I get abort trap
– is there maybe some kind of buffer overflow protection going on?
Using an offset of 88 works on my machine. I used Nemo's approach of finding out the return address.