how to access the current batch I am working on? The forward calculation should only consider the actual batch and as the gradients also belong only to that batch.
For this you can use batch_size = Total training records
in model.fit()
so that every epoch has just one forward pass and back propagation. Thus you can analysis the gradients on epoch 1
and modify the learning rate for epoch 2
OR if you are using the custom training loop then modify the code accordingly.
any better ideas to not use K.function for updating and evaluating a forward pass to calculate the loss function on that batch?
I do not recall any other option to evaluate gradient apart from using from tensorflow.keras import backend as K
in tensorflow version 1.x
. The best option is to update tensorflow to latest version 2.2.0
and use tf.GradientTape
.
Would recommend to go through this answer to capture gradients using from tensorflow.keras import backend as K
in tensorflow 1.x
.
Below is a sample code which is almost similar to your requirement. I am using tensorflow version 2.2.0
. You can build your requirements from this program.
We are doing below functions in the program -
- We are altering the Learning rate after every epoch. You can do that using callbacks argument of
model.fit
. Here I am incrementing learning rate by 0.01 for every epoch using tf.keras.callbacks.LearningRateScheduler
and also displaying it at end of every epoch using tf.keras.callbacks.Callback
.
- Computing the gradient using
tf.GradientTape()
after end of every epoch. We are collecting the grads of every epoch to a list using append.
- Also have set
batch_size=len(train_images)
as per your requirement.
Note : I am training on just 500 records from Cifar dataset due to memory constraints.
Code -
%tensorflow_version 2.x
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import backend as K
import os
import numpy as np
import matplotlib.pyplot as plt
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10.load_data()
train_images = train_images[:500]
train_labels = train_labels[:500]
test_images = test_images[:50]
test_labels = test_labels[:50]
model = Sequential([
Conv2D(16, 3, padding='same', activation='relu', input_shape=(32, 32, 3)),
MaxPooling2D(),
Conv2D(32, 3, padding='same', activation='relu'),
MaxPooling2D(),
Conv2D(64, 3, padding='same', activation='relu'),
MaxPooling2D(),
Flatten(),
Dense(512, activation='relu'),
Dense(10)
])
lr = 0.01
adam = Adam(lr)
# Define the Gradient Fucntion
epoch_gradient = []
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# Define the Required Callback Function
class GradientCalcCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
with tf.GradientTape() as tape:
logits = model(train_images, training=True)
loss = loss_fn(train_labels, logits)
grad = tape.gradient(loss, model.trainable_weights)
model.optimizer.apply_gradients(zip(grad, model.trainable_variables))
epoch_gradient.append(grad)
gradcalc = GradientCalcCallback()
# Define the Required Callback Function
class printlearningrate(tf.keras.callbacks.Callback):
def on_epoch_begin(self, epoch, logs={}):
optimizer = self.model.optimizer
lr = K.eval(optimizer.lr)
Epoch_count = epoch + 1
print('\n', "Epoch:", Epoch_count, ', LR: {:.2f}'.format(lr))
printlr = printlearningrate()
def scheduler(epoch):
optimizer = model.optimizer
return K.eval(optimizer.lr + 0.01)
updatelr = tf.keras.callbacks.LearningRateScheduler(scheduler)
model.compile(optimizer=adam,
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs = 10
history = model.fit(train_images, train_labels, epochs=epochs, batch_size=len(train_images),
validation_data=(test_images, test_labels),
callbacks = [printlr,updatelr,gradcalc])
# (7) Convert to a 2 dimensiaonal array of (epoch, gradients) type
gradient = np.asarray(epoch_gradient)
print("Total number of epochs run:", epochs)
print("Gradient Array has the shape:",gradient.shape)
Output -
Epoch: 1 , LR: 0.01
Epoch 1/10
1/1 [==============================] - 0s 427ms/step - loss: 30.1399 - accuracy: 0.0820 - val_loss: 2114.8201 - val_accuracy: 0.1800 - lr: 0.0200
Epoch: 2 , LR: 0.02
Epoch 2/10
1/1 [==============================] - 0s 329ms/step - loss: 141.6176 - accuracy: 0.0920 - val_loss: 41.7008 - val_accuracy: 0.0400 - lr: 0.0300
Epoch: 3 , LR: 0.03
Epoch 3/10
1/1 [==============================] - 0s 328ms/step - loss: 4.1428 - accuracy: 0.1160 - val_loss: 2.3883 - val_accuracy: 0.1800 - lr: 0.0400
Epoch: 4 , LR: 0.04
Epoch 4/10
1/1 [==============================] - 0s 329ms/step - loss: 2.3545 - accuracy: 0.1060 - val_loss: 2.3471 - val_accuracy: 0.1800 - lr: 0.0500
Epoch: 5 , LR: 0.05
Epoch 5/10
1/1 [==============================] - 0s 340ms/step - loss: 2.3208 - accuracy: 0.1060 - val_loss: 2.3047 - val_accuracy: 0.1800 - lr: 0.0600
Epoch: 6 , LR: 0.06
Epoch 6/10
1/1 [==============================] - 0s 331ms/step - loss: 2.3048 - accuracy: 0.1300 - val_loss: 2.3069 - val_accuracy: 0.0600 - lr: 0.0700
Epoch: 7 , LR: 0.07
Epoch 7/10
1/1 [==============================] - 0s 337ms/step - loss: 2.3041 - accuracy: 0.1340 - val_loss: 2.3432 - val_accuracy: 0.0600 - lr: 0.0800
Epoch: 8 , LR: 0.08
Epoch 8/10
1/1 [==============================] - 0s 341ms/step - loss: 2.2871 - accuracy: 0.1400 - val_loss: 2.6009 - val_accuracy: 0.0800 - lr: 0.0900
Epoch: 9 , LR: 0.09
Epoch 9/10
1/1 [==============================] - 1s 515ms/step - loss: 2.2810 - accuracy: 0.1440 - val_loss: 2.8530 - val_accuracy: 0.0600 - lr: 0.1000
Epoch: 10 , LR: 0.10
Epoch 10/10
1/1 [==============================] - 0s 343ms/step - loss: 2.2954 - accuracy: 0.1300 - val_loss: 2.3049 - val_accuracy: 0.0600 - lr: 0.1100
Total number of epochs run: 10
Gradient Array has the shape: (10, 10)
Hope this answers your question. Happy Learning.