I have a dataset with calculated quantiles for each department and country. It looks like this:
df <- structure(list(quantile = c("p5", "p25", "p50", "p75", "p95",
"p5", "p25", "p50", "p75", "p95", "p5", "p25", "p50", "p75",
"p95", "p5", "p25", "p50", "p75", "p95"), value = c(6, 12, 20,
33, 61, 6, 14, 23, 38, 63, 7, 12, 17, 26, 50, 7, 12, 18, 26,
51), country = c("A", "A", "A", "A", "A", "B", "B", "B", "B",
"B", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B"), dep = c("D",
"D", "D", "D", "D", "D", "D", "D", "D", "D", "I", "I", "I", "I",
"I", "I", "I", "I", "I", "I"), kpi = c("F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F")), row.names = c(NA, -20L), class = c("tbl_df", "tbl",
"data.frame"))
Now, I would like to build a boxplot for each department comparing countries and using p5/p95 instead of min/max similar to this plot but without outliers (hence, Train_number
would be countries
):
The corresponding code to this plot is (from question ggplot2, geom_boxplot with custom quantiles and outliers):
ggplot(MyData, aes(factor(Stations), Arrival_Lateness,
fill = factor(Train_number))) +
stat_summary(fun.data = f, geom="boxplot",
position=position_dodge(1))+
stat_summary(aes(color=factor(Train_number)),fun.y = q, geom="point",
position=position_dodge(1))
I tried to derive a solution from the code above and the provided answers. Unfortunately I lack the knowledge how to provide the neccessary values from the variables quantile
and value
to ggplot()
. Is there an argument in the stat_summary()
function I missed and could use? Or just another simple solution?