I have this code in Matlab which computes running average:
as = movmean(std_new1,PTA);
Here is as when it's computed in matlab:
as = [NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 0.0311573, 0.03135, 0.0315315, 0.0317018, 0.0318609, 0.0320087, 0.0321454, 0.0322708, 0.0323851, 0.0324881, 0.0325799, 0.0326605, 0.0329592, 0.0334758, 0.0342104, 0.0351631, 0.0363338, 0.0377224, 0.0393291, 0.0411538, 0.0431965, 0.0454572, 0.0473395, 0.0488433, 0.0499687, 0.0507156, 0.051084, 0.051074, 0.0506856, 0.0499187, 0.0487733, 0.0472495, 0.0456993, 0.0441228, 0.0425198, 0.0408905, 0.0392348, 0.0375527, 0.0358443, 0.0341094, 0.0323482, 0.0305606, 0.0290992, 0.0279639, 0.0271548, 0.0266719, 0.0265151, 0.0266844, 0.02718, 0.0280016, 0.0291495, 0.0306235, 0.0319449, 0.0331137, 0.03413, 0.0349937, 0.0357048, 0.0362634, 0.0366693, 0.0369227, 0.0370235, 0.0369717, 0.0369048, 0.0368227, 0.0367255, 0.0366131, 0.0364856, 0.036343, 0.0361852, 0.0360122, 0.0358241, 0.0356209, 0.03539, 0.0351316, 0.0348455, 0.0345318, 0.0341905, 0.0338216, 0.0334251, 0.033001, 0.0325493, 0.0320699, 0.0315601, 0.0310198, 0.030449, 0.0298477, 0.029216, 0.0285537, 0.027861, 0.0271378, 0.0263841, 0.0255999, 0.0248585, 0.02416, 0.0235044, 0.0228916, 0.0223217, 0.0217946, 0.0213104, 0.020869, 0.0204704, 0.0201148, 0.0198367, 0.0196361, 0.0195132, 0.0194679, 0.0195001, 0.0196099, 0.0197973, 0.0200623, 0.0204049, 0.0208251, 0.0211917, 0.0215047, 0.0217641, 0.02197, 0.0221224, 0.0222211, 0.022429, 0.0226666, 0.0229393, 0.0232537, 0.0235459, 0.0238112, 0.0240434, 0.0242341, 0.0243722]
I need to do the same operation in Python. I basically tried every solution proposed here Moving average or running mean but the problem is that none of them gives correct results on my data.
This is std_new1
std_new1 = np.array([np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 0.0223287, 0.023921, 0.0255133, 0.0271056, 0.0286979, 0.0302902, 0.0318825, 0.0334747, 0.035067, 0.0366593, 0.0382516, 0.0370447, 0.0358378, 0.0346309, 0.0334241, 0.0322172, 0.0310103, 0.0298034, 0.0285965, 0.0273896, 0.0261827, 0.0275508, 0.028919, 0.0302871, 0.0316552, 0.0330233, 0.0343914, 0.0357595, 0.0371276, 0.0384957, 0.0398638, 0.0430172, 0.0461705, 0.0493238, 0.0524771, 0.0556305, 0.0587838, 0.0619371, 0.0650904, 0.0682438, 0.0713971, 0.0651962, 0.0589952, 0.0527943, 0.0465933, 0.0403924, 0.0341914, 0.0279905, 0.0217896, 0.0155886, 0.00938767, 0.0120134, 0.0146392, 0.017265, 0.0198907, 0.0225165, 0.0251422, 0.027768, 0.0303938, 0.0330195, 0.0356453, 0.0359675, 0.0362898, 0.036612, 0.0369342, 0.0372565, 0.0375787, 0.037901, 0.0382232, 0.0385454, 0.0388677, 0.0384419, 0.0380161, 0.0375903, 0.0371645, 0.0367387, 0.0363129, 0.0358871, 0.0354613, 0.0350355, 0.0346097, 0.034629, 0.0346483, 0.0346676, 0.034687, 0.0347063, 0.0347256, 0.034745, 0.0347643, 0.0347836, 0.034803, 0.033825, 0.032847, 0.0318689, 0.0308909, 0.0299129, 0.0289349, 0.0279569, 0.0269789, 0.0260009, 0.0250229, 0.0244325, 0.0238421, 0.0232518, 0.0226614, 0.022071, 0.0214806, 0.0208903, 0.0202999, 0.0197095, 0.0191191, 0.0189982, 0.0188772, 0.0187562, 0.0186352, 0.0185142, 0.0183932, 0.0182722, 0.0181512, 0.0180302, 0.0179092, 0.0188705, 0.0198318, 0.0207932, 0.0217545, 0.0227158, 0.0236771, 0.0246384, 0.0255997, 0.026561, 0.0275224, 0.02633, 0.0251377, 0.0239454, 0.022753, 0.0215607, 0.0203684])
This is PTA
(1x1 matrix)
PTA = np.array([20])
The following one, for example,
AS = [np.mean(std_new1[x:x + PTA[0]]) for x in range(len(std_new1) - PTA[0] + 1)]
gives me almost the same result but the are less NA values at the beginning and there are numeric values missing at the end.
This is as computed in Python:
[ nan nan nan nan nan nan
nan nan nan 0.03115731 0.03135002 0.03153151
0.03170179 0.03186087 0.03200873 0.03214538 0.03227083 0.03238507
0.0324881 0.03257992 0.03266053 0.03295915 0.03347579 0.03421044
0.03516309 0.03633375 0.03772243 0.03932911 0.04115381 0.04319652
0.04545724 0.04733951 0.04884332 0.04996868 0.05071558 0.05108404
0.05107404 0.05068559 0.04991868 0.04877333 0.04724952 0.04569933
0.04412277 0.04251983 0.04089051 0.03923481 0.03755273 0.03584427
0.03410944 0.03234823 0.03056064 0.0290992 0.02796393 0.02715482
0.02667186 0.02651507 0.02668443 0.02717996 0.02800164 0.02914948
0.03062348 0.0319449 0.03311375 0.03413001 0.0349937 0.03570481
0.03626335 0.0366693 0.03692268 0.03702348 0.0369717 0.03690477
0.0368227 0.03672548 0.03661312 0.03648561 0.03634296 0.03618516
0.03601221 0.03582412 0.03562089 0.03539004 0.03513158 0.03484552
0.03453184 0.03419055 0.03382164 0.03342514 0.03300102 0.03254929
0.03206995 0.03156012 0.03101981 0.03044902 0.02984774 0.02921597
0.02855372 0.02786099 0.02713777 0.02638407 0.02559987 0.02485853
0.02416004 0.02350441 0.02289162 0.02232169 0.0217946 0.02131037
0.02086898 0.02047045 0.02011476 0.01983666 0.01963615 0.01951322
0.01946787 0.01950011 0.01960994 0.01979734 0.02006233 0.02040491
0.02082507 0.02119166 0.02150469 0.02176414 0.02197004 0.02212236
0.02222112]