I'm working with chaotic attractors, and testing some continuous-> discrete equivalences. I've made a continuous simulation of the Rossler system this way
a = 0.432; b = 2; c = 4;
Rossler = {
x'[t] == -y[t] - z[t],
y'[t] == x[t] + a*y[t],
z'[t] == b + x[t]*z[t]-c*z[t]};
sol = NDSolve[
{Rossler, x[0] == y[0] == z[0] == 0.5},
{x, y, z}, {t,500}, MaxStepSize -> 0.001, MaxSteps -> Infinity]
Now, when trying to evaluate a discrete equivalent system with RSolve, Mma doesn't do anything, not even an error, it just can't solve it.
RosslerDiscreto = {
x[n + 1] == x[n] - const1*(y[n] + z[n]),
y[n + 1] == 1 - a*const2)*y[n] + const2*x[n],
z[n + 1] == (z[n]*(1 - const3) + b*const3)/(1 - const3*x[n])}
I want to know if there is a numerical function for RSolve, analogous as the NDSolve is for DSolve. I know i can make the computation with some For[] cycles, just want to know if it exists such function.