I'm trying to improve my classification results by doing clustering and use the clustered data as another feature (or use it alone instead of all other features - not sure yet).
So let's say that I'm using unsupervised algorithm - GMM:
gmm = GaussianMixture(n_components=4, random_state=RSEED)
gmm.fit(X_train)
pred_labels = gmm.predict(X_test)
I trained the model with training data and predicted the clusters by the test data.
Now I want to use a classifier (KNN for example) and use the clustered data within it. So I tried:
#define the model and parameters
knn = KNeighborsClassifier()
parameters = {'n_neighbors':[3,5,7],
'leaf_size':[1,3,5],
'algorithm':['auto', 'kd_tree'],
'n_jobs':[-1]}
#Fit the model
model_gmm_knn = GridSearchCV(knn, param_grid=parameters)
model_gmm_knn.fit(pred_labels.reshape(-1, 1),Y_train)
model_gmm_knn.best_params_
But I'm getting:
ValueError: Found input variables with inconsistent numbers of samples: [418, 891]
Train and Test are not with same dimension. So how can I implement such approach?