I created a virtual bool function in a class (material
) and made a super class (diffuse
) that defines the body of the function (scatter()
).
The issue is in the parameters of this function, because they give an error: syntax error: missing ',' before '&'
. I have no idea why this is happening, because I used the same exact code in another project that worked.
#ifndef MATERIAL_H
#define MATERIAL_H
#include "ray.h"
#include "vec3.h"
#include "hittable_list.h"
#include "hittable.h"
class material {
public:
virtual bool scatter(const ray& r_in, const hit_record& rec, color& attenuation, ray& scattered) const = 0; //problem
//Error C4430 missing type specifier-int assumed.
//Error C2143 syntax error: missing ',' before '&'
};
class diffuse : public material {
public:
diffuse(const color& a) : albedo(a) {}
virtual bool scatter(const ray& r_in, const hit_record& rec, color& attenuation, ray& scattered) const {
vec3 scatter_direction = rec.normal + vec3::random_unit_vector();
scattered = ray(rec.p, scatter_direction);
attenuation = albedo;
return true;
}
public:
color albedo;
};
#endif
ray.h
#ifndef RAY_H
#define RAY_H
#include "vec3.h"
class ray {
public:
ray() {}
ray(const point3& origin, const vec3& direction, double time = 0.0)
: orig(origin), dir(direction), tm(time)
{}
point3 origin() const { return orig; }
vec3 direction() const { return dir; }
double time() const { return tm; }
point3 at(double t) const {
return orig + t * dir;
}
public:
point3 orig;
vec3 dir;
double tm;
};
#endif
hittable.h
#ifndef HITTABLE_H
#define HITTABLE_H
#include "ray.h"
#include "material.h"
class material;
struct hit_record {
point3 p;
vec3 normal;
shared_ptr<material> mat_ptr;
};
class hittable {
public:
virtual bool hit(const ray& r, hit_record& rec) const = 0;
};
#endif
hittable_list.h
#ifndef HITTABLE_LIST_H
#define HITTABLE_LIST_H
#include "hittable.h"
#include <memory>
#include <vector>
using std::shared_ptr;
using std::make_shared;
class hittable_list : public hittable {
public:
hittable_list() {}
hittable_list(shared_ptr<hittable> object) { add(object); }
void clear() { objects.clear(); }
void add(shared_ptr<hittable> object) { objects.push_back(object); }
virtual bool hit(const ray& r, hit_record& rec) const;
public:
std::vector<shared_ptr<hittable>> objects;
};
bool hittable_list::hit(const ray& r, hit_record& rec) const {
bool hit_anything = false;
for (const auto& object : objects) {
if (object->hit(r, rec)) {
hit_anything = true;
}
}
return hit_anything;
}
#endif
vec3.h
#pragma once
#ifndef VEC3_H
#define VEC3_H
#include <cmath>
#include <iostream>
#include <algorithm>
#include "mathing.h"
using std::sqrt;
class vec3 {
public:
vec3() : e{ 0,0,0 } {}
vec3(double e0, double e1, double e2) : e{ e0, e1, e2 } {}
double x() const { return e[0]; }
double y() const { return e[1]; }
double z() const { return e[2]; }
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
double operator[](int i) const { return e[i]; }
double& operator[](int i) { return e[i]; }
vec3& operator+=(const vec3 &v) {
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator*=(const double t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& operator/=(const double t) {
return *this *= 1 / t;
}
double length() const {
return sqrt(length_squared());
}
double length_squared() const {
return e[0] * e[0] + e[1] * e[1] + e[2] * e[2];
}
public:
double e[3];
inline static vec3 random() {
return vec3(random_double(), random_double(), random_double());
}
inline static vec3 random(double min, double max) {
return vec3(random_double(min, max), random_double(min, max), random_double(min, max));
}
inline static vec3 random_unit_vector() {
auto a = random_double(0, 2 * pi);
auto z = random_double(-1, 1);
auto r = sqrt(1 - z * z);
return vec3(r*cos(a), r*sin(a), z);
}
};
inline std::ostream& operator<<(std::ostream &out, const vec3 &v) {
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline vec3 operator+(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline vec3 operator-(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator*(const vec3 &u, const vec3 &v) {
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline vec3 operator*(double t, const vec3 &v) {
return vec3(t*v.e[0], t*v.e[1], t*v.e[2]);
}
inline vec3 operator*(const vec3 &v, double t) {
return t * v;
}
inline vec3 operator/(vec3 v, double t) {
return (1 / t) * v;
}
inline double dot(const vec3 &u, const vec3 &v) {
return u.e[0] * v.e[0]
+ u.e[1] * v.e[1]
+ u.e[2] * v.e[2];
}
inline vec3 cross(const vec3 &u, const vec3 &v) {
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
inline vec3 unit_vector(vec3 v) {
return v / v.length();
}
inline static vec3 random_in_unit_sphere() {
while (true) {
auto p = vec3::random(0, 1);
if (p.length_squared() >= 1) continue;
return p;
}
}
inline static vec3 random_in_hemisphere(const vec3& normal) {
vec3 in_unit_sphere = random_in_unit_sphere();
if (dot(in_unit_sphere, normal) > 0.0) // In the same hemisphere as the normal
return in_unit_sphere;
else
return -in_unit_sphere;
}
inline static vec3 reflect(const vec3& v, const vec3& n) {
return v - 2 * dot(v, n)*n;
}
vec3 refract(const vec3& uv, const vec3& n, double etai_over_etat) {
auto cos_theta = dot(-uv, n);
vec3 r_out_parallel = etai_over_etat * (uv + cos_theta * n);
vec3 r_out_perp = -sqrt(1.0 - r_out_parallel.length_squared()) * n;
return r_out_parallel + r_out_perp;
}
double schlick(double cosine, double ref_idx) {
auto r0 = (1 - ref_idx) / (1 + ref_idx);
r0 = r0 * r0;
return r0 + (1 - r0)*pow((1 - cosine), 5);
}
vec3 random_in_unit_disk() {
while (true) {
auto p = vec3(random_double(-1, 1), random_double(-1, 1), 0);
if (p.length_squared() >= 1) continue;
return p;
}
}
// Type aliases for vec3
using point3 = vec3; // 3D point
using color = vec3; // RGB color
#endif