I am trying to construct a t.test
for each group in my data. The data look like:
Value quantiles sector days quarter
<dbl> <int> <fct> <date> <int>
1 0.00297 5 Administrative_Support_and_WasteManagement 2015-12-01 4
2 -0.0181 5 Administrative_Support_and_WasteManagement 2015-12-02 4
3 -0.0116 5 Administrative_Support_and_WasteManagement 2015-12-03 4
4 0.0315 5 Administrative_Support_and_WasteManagement 2015-12-04 4
5 -0.00989 5 Administrative_Support_and_WasteManagement 2015-12-07 4
I want to compare the quantiles
5 to the quantiles
1 for each of the sectors
. I cannot seem to get my head around applying this. I have followed the following post and this.
d %>% filter(sector == "Administrative_Support_and_WasteManagement") %>% filter(quantiles == "1" | quantiles == "5") %>% do(tidy(t.test(Value ~ quantiles, data = .)))
Note: (I opened a question similar to this earlier but I had somewhat incorrect data, now I re-open it with better data) - (The data I posted previously contained averages where as now I post all the results)
Data:
d <- structure(list(Value = c(0.00296876210867514, -0.0181296956460799,
-0.0115873266710307, 0.0315478666190354, -0.00988636312349433,
-0.00242634465626856, -0.0234798574491402, 0.0123574943404412,
-0.0248864869561544, -0.0115478028107558, 0.00922857125039434,
0.0299607926086105, -0.0170002260577257, -0.0298808533324783,
0.0241654777287876, 0.00812309007123035, 0.0211991522965407,
-0.00375742361069642, 0.00216874006634904, 0.0115719936784697,
-0.0159970483018177, -0.0176747831926888, 0.00914788811733325,
-0.00497671984851245, -0.0233120426283472, 0.0221309075376366,
-0.00304213749749438, 0.00475654419000082, -0.0183101483313811,
0.0096442255506588, -0.0287464421283958, 0.00575236460115436,
0.00774898253628575, 0.0339619671327238, 0.00221333872652818,
-0.0315371403962001, 0.0124053917357032, 0.00585649256596277,
0.0111967590752871, -0.0012402281600935, 0.00283807864578978,
0.00477602245173037, -0.00739383730633203, -0.0124146652811225,
0.00699567409482049, -0.0128725232644876, 0, -0.00455423594630378,
-0.0155957062450574, -0.0306294860201715, -0.0124211369376138,
0.00375137825089111, -0.010551968792834, -0.00133292548883168,
0.0322579866063581, 0.0153018446439053, -0.0210147226941333,
-0.00823950137714569, 0.0118059501547647, 0.0183663876339941,
0.0322514370158224, 0.00123312797504771, -0.0123176233046124,
0.00478070480652759, -0.011791780729437, -0.0115133814120223,
0.0185772180911317, -0.0182383993684311, 0.0133666637369776,
-0.0029062862519027, -0.0156949881920269, -0.0200457029975595,
-0.00581132293211351, -0.000467689066796728, -0.0205847567566653,
-0.00405991936485284, 0.0107913805457514, 0.00996414576702098,
-0.0227857977604901, -0.0197116702438392, 0.00392356007775407,
0.0254030519688506, 0.0328728508706804, -0.00138388003792611,
-0.0145497075967563, 0.00937439444653831, -0.0150918354451289,
-0.0110796453519525, 0.0183872204560398, -0.0180552348720615,
-0.0169472046399178, 0.01036603895113, -0.00657951979551419,
-0.00594976687015425, -0.052174058706666, 0.0135829028967185,
-0.025508393645447, -0.00639321504017842, 0.0372708285569938,
0.0143960642656731, -0.0290760546196913, -0.0190134910073294,
0.0215627116736454, 0.00403172102692406, 0.0144090494652183,
-0.000116556760525466, -0.00954817119785667, 0.00858219121633952,
-0.00291427748135642, -0.0146130081951867, 0.0137880131658896,
-0.00655741866248571, -0.0105732413322431, 0.000679479394077198,
-0.0132098688301799, -0.01470037223336, 0.00488859262727104,
-0.00176901074482216, 0.00291138600721697, 0.0125583222163979,
0.0245559541709475, 0.00687390226486406, -0.00640408733484255,
-0.020795302469532, -0.0172627779907486, 0.0128901699913022,
0.00873362911364328, -0.00358690903446024, -0.00595830865091351,
0.0113012268261958, -0.0109279482014276, 0.00998752596314545,
-0.011774271625657, -0.0117743560670264, 0.036751090699535, 0.0367511671864984,
-0.00679851619285854, -0.00679848974204622, -0.00586702171022546,
-0.00586679737045148, 0.0293443927123587, 0.0293443447922328,
0.0211818171841363, 0.0211816588615201, -0.00694018798375551,
-0.00694009931954831, 0.0085591730208403, 0.00855888274676198,
-0.00599524764587345, -0.0059948316825057, -0.00556114975554911,
-0.00556126737733298, 0.0218966750964589, 0.021896586567274,
0.0249730136243214, 0.0249729148208289, -0.0372236332868542,
-0.0372234220317118, -0.0245253922409658, -0.0245255553806418,
0.00136106278680836, 0.00136105746206416, 0.00119955108982928,
0.00119947455269087, 0.0355815515291418, 0.0355775848030797,
-0.00806091055177272, 0.00125010579759643, 0.0169346958144836,
-0.000460402147609007, -0.0173513351767227, -0.00959064327485371,
-0.0153519367028815, -0.00791551949905311, -0.0118472434272909,
-0.0430633237842751, -0.00818205041723219, 0.00128896619518026,
0.0105561277033985, -0.0196178343949045, -0.00207895010394998,
0.0351561960856148, 0.00352198742138365, -0.0393582110643824,
0.00313149791231737, 0.00962544249806041, 0.00747222346116394,
0.0432225853310784, -0.00759992626624351, -0.0229743330039525,
0.012136536337207, -0.00949280563309518, -0.0166456485929056,
0.0156772732889816, -0.0154352900289038, -0.00682305600794197,
0.0298519915080542, -0.00698846687186727, 0.00471831460463124,
-0.00485538912584471, 0.00471932015502685, -0.0191067775605855,
0.00884664736851382, 0.0477876050585133, 0.00706386262524772,
-0.0189844763806329, -0.0257247344213527, 0.00175497960730109,
0.0154481629394014, -0.00972380744487333, 0.00150448774606438,
-0.00292557844484176, 0.0126883598630376, -0.0111980303196064,
-0.0156014795343562, 0.00310327008330669, -0.00522054377573733,
-0.0149659941465293, 0.0262427992408285, 0.000288746079580848,
-0.0246035215225624, -0.0211845159132696, 0.00191262633696754,
-0.0381794823494306, 0.0109682545146847, 0.0194256920689706,
0.00668967396772024, -0.0144984594949916, -0.00429130043247328,
0.0179565184106953, -0.00181462578806046, 0.00828023300913783,
0.00260401110704445, 0.00549405412397319, 0.00894072956432312,
-0.00443058912342709, -0.00761567569753141, 0.00787715667101829,
-0.0156310668229778, -0.00913068641799575, 0.00721153875046232,
-0.00278436765252055, -0.0103710011966494, -0.0112856917084116,
0.00326131254540107, 0.00365704983108284, 0.00202425093019221,
0.0060606060606061, 0.0228915261044178, -0.019630939129601, -0.0116138971411253,
0.00445709076175049, 0.00927789393796319, -0.000399680255795287,
-0.00439824070371864, 0, 0.0108433734939761, -0.0154945967421535,
-0.00847461628431723, 0.0118308826651878, -0.000508118615564657,
-0.00508654278281706, -0.00562391428046705, -0.058097411943333,
-0.0196505785989808, -0.0167040842460838, -0.0107588712722656,
-0.014376061657868, -0.00875115702220242, 0.0217775812443188,
0.0057599596201281, -0.0263457272460497, -0.00588238336618996,
-0.000591712631664354, 0.0148015097991177, 0.0303384125671216,
0.000566555625779896, -0.0265988454510677, 0.00523259120019137,
-0.0185080777817681, -0.00294629578099959), quantiles = c(5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), sector = structure(c(2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L), .Label = c("Accommodation_and_FoodServices",
"Administrative_Support_and_WasteManagement", "Agriculture",
"ArtsEntertainment_and_Recreation", "EducationalServices", "Finance_and_Insurance",
"HealthCase_and_SocialAssistance", "Information", "Manufacturing",
"Mining", "OtherServices", "ProfessionalScientific_and_Technical",
"RealEstateRental_and_Leasing", "RetailTrade", "Transportation_and_Warehousing",
"Utilities", "WholesaleTrade"), class = "factor"), days = structure(c(16770,
16771, 16772, 16773, 16776, 16777, 16778, 16779, 16780, 16783,
16784, 16785, 16786, 16787, 16790, 16791, 16792, 16793, 16797,
16798, 16799, 16800, 16770, 16771, 16772, 16773, 16776, 16777,
16778, 16779, 16780, 16783, 16784, 16785, 16786, 16787, 16790,
16791, 16792, 16793, 16797, 16798, 16799, 16800, 16770, 16771,
16772, 16773, 16776, 16777, 16778, 16779, 16780, 16783, 16784,
16785, 16786, 16787, 16790, 16791, 16792, 16793, 16797, 16798,
16799, 16800, 16770, 16771, 16772, 16773, 16776, 16777, 16778,
16779, 16780, 16783, 16784, 16785, 16786, 16787, 16790, 16791,
16792, 16793, 16797, 16798, 16799, 16800, 16770, 16771, 16772,
16773, 16776, 16777, 16778, 16779, 16780, 16783, 16784, 16785,
16786, 16787, 16790, 16791, 16792, 16793, 16797, 16798, 16799,
16800, 16770, 16771, 16772, 16773, 16776, 16777, 16778, 16779,
16780, 16783, 16784, 16785, 16786, 16787, 16790, 16791, 16792,
16793, 16797, 16798, 16799, 16800, 16770, 16770, 16771, 16771,
16772, 16772, 16773, 16773, 16776, 16776, 16777, 16777, 16778,
16778, 16779, 16779, 16780, 16780, 16783, 16783, 16784, 16784,
16785, 16785, 16786, 16786, 16787, 16787, 16790, 16790, 16791,
16791, 16792, 16792, 16793, 16797, 16798, 16799, 16800, 16770,
16771, 16772, 16773, 16776, 16777, 16778, 16779, 16780, 16783,
16784, 16785, 16786, 16787, 16790, 16791, 16792, 16793, 16797,
16798, 16799, 16800, 16770, 16771, 16772, 16773, 16776, 16777,
16778, 16779, 16780, 16783, 16784, 16785, 16786, 16787, 16790,
16791, 16792, 16793, 16797, 16798, 16799, 16800, 16770, 16771,
16772, 16773, 16776, 16777, 16778, 16779, 16780, 16783, 16784,
16785, 16786, 16787, 16790, 16791, 16792, 16793, 16797, 16798,
16799, 16800, 16770, 16771, 16772, 16773, 16776, 16777, 16778,
16779, 16780, 16783, 16784, 16785, 16786, 16787, 16790, 16791,
16792, 16793, 16797, 16798, 16799, 16800, 16770, 16771, 16772,
16773, 16776, 16777, 16778, 16779, 16780, 16783, 16784, 16785,
16786, 16787, 16790, 16791, 16792, 16793, 16797, 16798, 16799,
16800), class = "Date"), quarter = c(4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 4L)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-281L))