My timeseries dates are being jumbled (day/month) when I assign them as a datetimeindex. Sees odd that parser could get it so wrong, but have tried declaring format and using Dayfirst but nothing working.
#input_data = pd.read_csv(url)
input_data = pd.read_csv(url,usecols=['Dates','TYAFWD Comdty'],skiprows=None, parse_dates=True, nrows=1500)
# Set Date as Index, clean dataframe
input_data = input_data.set_index('Dates')
df = pd.DataFrame(input_data).dropna()
print(df.columns)
# Create new Date index
data_time = pd.to_datetime(df.index)
datetime_index = pd.DatetimeIndex(data_time.values)
df = df.set_index(datetime_index)
df.index = pd.to_datetime(df.index, infer_datetime_format='%Y/%m/%d' )
df['year'] = pd.DatetimeIndex(df.index).year
df['month'] = pd.DatetimeIndex(df.index).month
df['week'] = pd.DatetimeIndex(df.index).weekofyear
print(df.head(30))
Can see from the output that it is all mixed up. I would expect all the entries in the output to be in May, the 5th month, but it is flipping the dates once <12
Here is my raw data: https://raw.githubusercontent.com/esheehan1/projects/master/BB_FUT_DATA.csv
Index(['TYAFWD Comdty'], dtype='object')
TYAFWD Comdty year month week
2020-05-26 0.508 2020 5 22
2020-05-25 0.494 2020 5 22
2020-05-22 0.494 2020 5 21
2020-05-21 0.508 2020 5 21
2020-05-20 0.512 2020 5 21
2020-05-19 0.512 2020 5 21
2020-05-18 0.552 2020 5 21
2020-05-15 0.483 2020 5 20
2020-05-14 0.474 2020 5 20
2020-05-13 0.494 2020 5 20
2020-12-05 0.510 2020 12 49
2020-11-05 0.548 2020 11 45
2020-08-05 0.527 2020 8 32
2020-07-05 0.494 2020 7 27
2020-06-05 0.568 2020 6 23
2020-05-05 0.541 2020 5 19