How to compute the n-fold Cartesian product on a list, that is, A × ... × A (n times), in an elegant (concise) way in Python?
Examples:
>>> l = ["a", "b", "c"]
>>> cart_prod(l, 0)
[]
>>> cart_prod(l, 1)
[('a',), ('b',), ('c',)]
>>> cart_prod(l, 2)
[('a', 'a'), ('a', 'b'), ('a', 'c'), ('b', 'a'), ('b', 'b'), ('b', 'c'), ('c', 'a'), ('c', 'b'), ('c', 'c')]
>>> cart_prod(l, 3)
[('a', 'a', 'a'), ('a', 'a', 'b'), ('a', 'a', 'c'), ('a', 'b', 'a'), ('a', 'b', 'b'), ('a', 'b', 'c'), ('a', 'c', 'a'), ('a', 'c', 'b'), ('a', 'c', 'c'),
('b', 'a', 'a'), ('b', 'a', 'b'), ('b', 'a', 'c'), ('b', 'b', 'a'), ('b', 'b', 'b'), ('b', 'b', 'c'), ('b', 'c', 'a'), ('b', 'c', 'b'), ('b', 'c', 'c'),
('c', 'a', 'a'), ('c', 'a', 'b'), ('c', 'a', 'c'), ('c', 'b', 'a'), ('c', 'b', 'b'), ('c', 'b', 'c'), ('c', 'c', 'a'), ('c', 'c', 'b'), ('c', 'c', 'c')]
I came up with the following iterative solution:
def cart_prod(l, n):
if n == 0:
return [] # compute the result for n = 0
# preliminarily, create a list of lists instead of a list of tuples
res = [[x] for x in l] # initialize list with singleton tuples (n = 1)
for i in range(n-1):
res = [r + [x] for r in res for x in l] # concatenate each n-1 tuple with each element from a
res = [tuple(el) for el in res] # turn the list of lists into a list of tuples
return res
This code does the job, but is there a shorter, possibly one-liner definition, maybe a nested list comprehension or a lambda expression? I am interested in more compact solutions, not necessarily more readable ones.
This question is not a duplicate of Get the cartesian product of a series of lists?. I do not want the Cartesian product of a series of lists crossed with each other. I want the Cartesian product of a single list crossed n-times with itself, where n is a parameter given to the function.