model = Sequential()
model.add(Conv1D(filters=4, kernel_size=(1), activation="relu", input_shape=(4,1)))
model.add(MaxPooling1D(pool_size=(1)))
model.add(Dropout(0.25))
model.add(Conv1D(filters=32, kernel_size=(1), activation='relu'))
model.add(MaxPooling1D(pool_size=(1)))
model.add(Dropout(0.25))
model.add(Conv1D(filters=64, kernel_size=(1), activation="relu"))
model.add(MaxPooling1D(pool_size=(1)))
model.add(Dropout(0.25))
model.add(Conv1D(filters=64, kernel_size=(1), activation='relu'))
model.add(MaxPooling1D(pool_size=(1)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(7, activation='sigmoid'))
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
Hello, I'm new to building neural networks and decided to try my hand solving a multi-label classification problem. I'm take four feature values as input and giving the resulting classification as one or more of 7 categories. As such, I decided to implement the neural network as seen above. However, upon fitting the model
model.fit(X_train, y_train, epochs = 10, validation_data = (X_test,y_test), batch_size = 64)
I receive this error:
Error when checking input: expected conv1d_92_input to have 3 dimensions, but got array with shape (415, 4)
I'm confused as to watch to do in order to get the neural network to fit to the data. The shape of feature and label data respectively are : X_train = (414,4) y_train = (413,7)