I'm surprised that i get a negative score on my predictions using the RandomForestRegressor, I'm using the default scorer(coefficient of determination). any help will be appreciated. my dataset looks something like this. dataset screenshot here
from sklearn.ensemble import RandomForestRegressor
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.model_selection import cross_val_score,RandomizedSearchCV,train_test_split
import numpy as np,pandas as pd,pickle
dataframe = pd.read_csv("../../notebook/car-sales.csv")
y = dataframe["Price"].str.replace("[\$\.\,]" , "").astype(int)
x = dataframe.drop("Price" , axis = 1)
cat_features = [
"Make",
"Colour",
"Doors",
]
oneencoder = OneHotEncoder()
transformer = ColumnTransformer([
("onehot" ,oneencoder, cat_features)
],remainder="passthrough")
transformered_x = transformer.fit_transform(x)
transformered_x = pd.get_dummies(dataframe[cat_features])
x_train , x_test , y_train,y_test = train_test_split(transformered_x , y , test_size = .2)
regressor = RandomForestRegressor(n_estimators=100)
regressor.fit(x_train , y_train)
regressor.score(x_test , y_test)