You can mix concurrency with parallelism.
Why? You can have your valid reasons. Imagine a bunch of requests you have to make while processing their responses (e.g., converting XML to JSON) as fast as possible.
I did some tests and here are the results.
In each test, I mix different workarounds to make a print 16000 times (I have 8 cores and 16 threads).
Parallelism with multiprocessing
, concurrency with asyncio
The fastest, 1.1152372360229492 sec.
import asyncio
import multiprocessing
import os
import psutil
import threading
import time
async def print_info(value):
await asyncio.sleep(1)
print(
f"THREAD: {threading.get_ident()}",
f"PROCESS: {os.getpid()}",
f"CORE_ID: {psutil.Process().cpu_num()}",
f"VALUE: {value}",
)
async def await_async_logic(values):
await asyncio.gather(
*(
print_info(value)
for value in values
)
)
def run_async_logic(values):
asyncio.run(await_async_logic(values))
def multiprocessing_executor():
start = time.time()
with multiprocessing.Pool() as multiprocessing_pool:
multiprocessing_pool.map(
run_async_logic,
(range(1000 * x, 1000 * (x + 1)) for x in range(os.cpu_count())),
)
end = time.time()
print(end - start)
multiprocessing_executor()
Very important note: with asyncio
I can spam tasks as much as I want. For example, I can change the value from 1000
to 10000
to generate 160000 prints and there is no problem (I tested it and it took me 2.0210490226745605 sec).
Parallelism with multiprocessing
, concurrency with threading
An alternative option, 1.6983509063720703 sec.
import multiprocessing
import os
import psutil
import threading
import time
def print_info(value):
time.sleep(1)
print(
f"THREAD: {threading.get_ident()}",
f"PROCESS: {os.getpid()}",
f"CORE_ID: {psutil.Process().cpu_num()}",
f"VALUE: {value}",
)
def multithreading_logic(values):
threads = []
for value in values:
threads.append(threading.Thread(target=print_info, args=(value,)))
for thread in threads:
thread.start()
for thread in threads:
thread.join()
def multiprocessing_executor():
start = time.time()
with multiprocessing.Pool() as multiprocessing_pool:
multiprocessing_pool.map(
multithreading_logic,
(range(1000 * x, 1000 * (x + 1)) for x in range(os.cpu_count())),
)
end = time.time()
print(end - start)
multiprocessing_executor()
Very important note: with this method I can NOT spam as many tasks as I want. If I change the value from 1000
to 10000
I get RuntimeError: can't start new thread
.
I also want to say that I am impressed because I thought that this method would be better in every aspect compared to asyncio, but quite the opposite.
Parallelism and concurrency with concurrent.futures
Extremely slow, 50.08251595497131 sec.
import os
import psutil
import threading
import time
from concurrent.futures import thread, process
def print_info(value):
time.sleep(1)
print(
f"THREAD: {threading.get_ident()}",
f"PROCESS: {os.getpid()}",
f"CORE_ID: {psutil.Process().cpu_num()}",
f"VALUE: {value}",
)
def multithreading_logic(values):
with thread.ThreadPoolExecutor() as multithreading_executor:
multithreading_executor.map(
print_info,
values,
)
def multiprocessing_executor():
start = time.time()
with process.ProcessPoolExecutor() as multiprocessing_executor:
multiprocessing_executor.map(
multithreading_logic,
(range(1000 * x, 1000 * (x + 1)) for x in range(os.cpu_count())),
)
end = time.time()
print(end - start)
multiprocessing_executor()
Very important note: with this method, as with asyncio
, I can spam as many tasks as I want. For example, I can change the value from 1000
to 10000
to generate 160000 prints and there is no problem (except for the time).
Extra notes
To make this comment, I modified the test so that it only makes 1600 prints (modifying the 1000
value with 100
in each test).
When I remove the parallelism from asyncio, the execution takes me 16.090194702148438 sec.
In addition, if I replace the await asyncio.sleep(1)
with time.sleep(1)
, it takes 160.1889989376068 sec.
Removing the parallelism from the multithreading option, the execution takes me 16.24941658973694 sec.
Right now I am impressed. Multithreading without multiprocessing gives me good performance, very similar to asyncio.
Removing parallelism from the third option, execution takes me 80.15227723121643 sec.