I'm not completely sure what you want to do here. Do you want to count the number of unique days (Monday/Tuesday/...), monthly dates (1-31 ish), yearly dates (1-365), or unique dates (unique days since the dawn of time)?
From a pandas series, you can use {series}.value_counts()
to get the number of entries for each unique value, or simply get all unique values with {series}.unique()
import pandas as pd
df = pd.DataFrame(pd.DatetimeIndex(['2016-10-08 07:34:13', '2015-11-15 06:12:48',
'2015-01-24 10:11:04', '2015-03-26 16:23:53',
'2017-04-01 00:38:21', '2015-03-19 03:47:54',
'2015-12-30 07:32:32', '2015-11-10 20:39:36',
'2015-06-24 05:48:09', '2015-03-19 16:05:19'],
dtype='datetime64[ns]', freq=None), columns = ["date"])
days (Monday/Tuesday/...):
df.date.dt.dayofweek.value_counts()
monthly dates (1-31 ish)
df.date.dt.day.value_counts()
yearly dates (1-365)
df.date.dt.dayofyear.value_counts()
unique dates (unique days since the dawn of time)
df.date.dt.date.value_counts()
To get the number of unique entries from any of the above, simply add .shape[0]