I'm writing a distributed programming DSL and I'd like to allow implementations to choose their serialization method (if any, as it might not even be needed for a simulated execution).
Trying to solve this by adding a type family led to the problem below for a standard function I have. I imagine that it would work if I could require, and have the type checker understand, that if two values are serializable their pairing is also serializable. However, adding that as a quantified constraint doesn't seem to work. Can this be solved or is there a better solution for the problem?
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeFamilies #-}
import Data.Kind
class (Monad (DistrM t)) => Distributed (t :: *) where
type Sendable t :: * -> Constraint
type DistrM t :: * -> *
-- ...
data FromSendable t a where
FromSendable :: (Sendable t b)
=> (b -> DistrM t a)
-> b
-> FromSendable t a
pairWith :: ( Sendable t a
, Distributed t
, forall a b. (Sendable t a, Sendable t b) => Sendable t (a,b)
)
=> a
-> FromSendable t b
-> FromSendable t (a,b)
pairWith a (FromSendable f b) =
FromSendable (\(a,b) -> (a,) <$> f b) (a,b)
-- >>> Could not deduce: Sendable t (a1, b1) ...
Edit 1
It type checks if I do
pairWith :: ( Sendable t a
, Distributed t
, st ~ Sendable t
, forall a b. (st a, st b) => st (a,b)
)
=> ...
It would get cumbersome to have to repeat these types of constraints, so I tried a type synonym but that doesn't work:
type Cs t = forall (st :: * -> Constraint).
(Sendable t ~ st, forall a b. (st a, st b) => st (a,b))
-- >>> Expected a constraint, but ‘st (a, b)’ has kind ‘*’