I am new to Keras and TensorFlow.
This question builds on the following question asked here: What is the meaning of axis=-1 in keras.argmax?
My question here is:
When comparing the actual values in matrix1
and matrix1_lastDropped
- after running the following statement:
matrix1_lastDropped = K.argmax(matrix1, axis=-1)
Why does matrix1_lastDropped
NOT contain the values in the original matrix matrix1
? The matrix1_lastDropped
dimensions are [4, 4, 3]
(because the last dimension of matrix1
was dropped), but the values should still be the same and adjusted into the new dimensions? Would these not?
Code is:
import tensorflow as tf
from keras import backend as K
with tf.Session() as test_a:
matrix1 = tf.random_normal([4, 4, 3, 3], mean=1, stddev=4, seed = 1)
print("matrix1.shape = " + str(matrix1.shape))
print ("matrix1 values are::" + str(matrix1.eval()))
# print("tf.keras.argmax = " + str(K.argmax(matrix1, axis=-1)))
# print("tf.keras.max = " + str(K.max(K.argmax(matrix1, axis=-1))))
matrix1_lastDropped = K.argmax(matrix1, axis=-1)
print ("matrix1_lastDropped shape is:: " + str(matrix1_lastDropped.shape))
print ("matrix1_lastDropped values are::" + str(matrix1_lastDropped.eval()))
Output is:
matrix1.shape = (4, 4, 3, 3)
matrix1 values are::[[[[ -2.24527287 6.93839502 1.26131749]
[ -8.77081585 1.39699364 3.36489725]
[ 3.37129188 -7.49171829 -1.89158893]]
[[ 0.7749185 3.57417917 -0.05729628]
[ 8.42653275 3.27136683 -0.5313437 ]
[ -4.94137383 6.04708433 0.8987757 ]]
[[ -0.05851877 7.13125515 -5.97190857]
[ -0.75157177 -1.26403999 2.28267717]
[ 5.53132391 -8.11302853 2.93124819]]
[[ -4.25083494 2.4274013 -5.92113352]
[ 0.83932906 4.59864807 -4.52235651]
[ 6.92584944 0.01802081 -1.93058872]]]
[[[ 0.21641421 1.28683209 3.53192353]
[ -5.28476286 6.31752491 -3.69346809]
[ 1.12617838 2.9082098 2.74776793]]
[[ -0.26723564 -0.80300128 -6.22426271]
[ 1.4995985 -2.08261681 -1.98496628]
[ -0.12781298 -6.83526182 -0.35044277]]
[[ 5.12079334 7.05360699 1.90063214]
[ -0.14264834 2.07530165 7.98484421]
[ 4.69548416 -7.2363987 -0.25753224]]
[[ 5.84135294 3.779212 -3.26219988]
[ 1.05456042 -3.27085018 0.26369983]
[ -7.82249355 8.3162384 5.97276115]]]
[[[ -0.34622049 0.83996451 -0.34342086]
[ -0.22979593 -2.06771874 -0.14843333]
[ -0.17881143 -2.23962522 -4.2636075 ]]
[[ 2.50129652 1.71023345 -7.23314571]
[ 2.6297071 -3.02893209 2.17062998]
[ 3.06534362 6.92378616 1.41760826]]
[[ -8.66411591 -1.42192721 1.18490028]
[ -1.67261004 -0.61323476 3.82889676]
[ -6.16030502 2.4496088 -10.06762886]]
[[ 8.92316818 1.62972403 3.10544157]
[ -7.84809399 2.90044761 -0.81601429]
[ 0.7232089 3.74772048 0.49090755]]]
[[[ 5.77174711 5.56470251 -5.79740763]
[ -4.30168772 3.1566093 0.95456219]
[ -2.50534177 4.83609009 -4.48813152]]
[[ 2.12740636 -1.81127858 2.1396203 ]
[ 2.34717274 0.98015857 4.33931494]
[ 2.54941368 -0.04910374 -0.16517568]]
[[ 2.74878979 6.5430727 1.77702928]
[ 0.75588918 4.74197483 8.82833767]
[ 2.06116533 -2.46971226 0.89486873]]
[[ 0.53019679 -1.78584528 0.10209811]
[ -2.84412932 1.40259576 1.23638427]
[ 0.97154915 -3.31380701 4.75023317]]]]
matrix1_lastDropped shape is:: (4, 4, 3)
matrix1_lastDropped values are::[[[1 0 0]
[1 2 1]
[1 2 2]
[0 0 1]]
[[2 1 0]
[2 1 0]
[1 2 1]
[1 0 2]]
[[1 1 0]
[0 2 1]
[2 2 0]
[0 2 0]]
[[0 2 0]
[1 2 0]
[1 2 0]
[0 0 1]]]