I have a data frame containing daily events related to various entities in time. I want to fill the gaps in those times series.
Here is the aggregate data I have (left), and on the right side, the data I want to have:
+---------+----------+-------+ +---------+----------+-------+
|entity_id| date|counter| |entity_id| date|counter|
+---------+----------+-------+ +---------+----------+-------+
| 3|2020-01-01| 7| | 3|2020-01-01| 7|
| 1|2020-01-01| 10| | 1|2020-01-01| 10|
| 2|2020-01-01| 3| | 2|2020-01-01| 3|
| 2|2020-01-02| 9| | 2|2020-01-02| 9|
| 1|2020-01-03| 15| | 1|2020-01-02| 0|
| 2|2020-01-04| 3| | 3|2020-01-02| 0|
| 1|2020-01-04| 14| | 1|2020-01-03| 15|
| 2|2020-01-05| 6| | 2|2020-01-03| 0|
+---------+----------+-------+ | 3|2020-01-03| 0|
| 3|2020-01-04| 0|
| 2|2020-01-04| 3|
| 1|2020-01-04| 14|
| 2|2020-01-05| 6|
| 1|2020-01-05| 0|
| 3|2020-01-05| 0|
+---------+----------+-------+
I have used this stack overflow topic, which was very useful: Filling gaps in timeseries Spark
Here is my code (filter for only one entity), it is in Python but I think the API is the same in Scala:
(
df
.withColumn("date", sf.to_date("created_at"))
.groupBy(
sf.col("entity_id"),
sf.col("date")
)
.agg(sf.count(sf.lit(1)).alias("counter"))
.filter(sf.col("entity_id") == 1)
.select(
sf.col("date"),
sf.col("counter")
)
.join(
spark
.range(
df # range start
.filter(sf.col("entity_id") == 1)
.select(sf.unix_timestamp(sf.min("created_at")).alias("min"))
.first().min // a * a, # a = 60 * 60 * 24 = seconds in one day
(df # range end
.filter(sf.col("entity_id") == 1)
.select(sf.unix_timestamp(sf.max("created_at")).alias("max"))
.first().max // a + 1) * a,
a # range step, a = 60 * 60 * 24 = seconds in one day
)
.select(sf.to_date(sf.from_unixtime("id")).alias("date")),
["date"], # column which will be used for the join
how="right" # type of join
)
.withColumn("counter", sf.when(sf.isnull("counter"), 0).otherwise(sf.col("counter")))
.sort(sf.col("date"))
.show(200)
)
This work very well, but now I want to avoid the filter
and do a range to fill the time series gaps for every entity (entity_id == 2
, entity_id == 3
, ...). For your information, depending on the entity_id
value, the minimum and the maximum of the column date
can be different, nevertheless if your help involves the global minimum and maximum of the whole data frame, it is ok for me as well.
If you need any other information, feel free to ask.
edit: add data example I want to have