Major edit following clarifications:
Given that someone has already mentioned the shift-and-mask approach (which is undeniably the right one), I'll give another approach, which, to be pedantic, is not portable, machine-dependent, and possibly exhibits undefined behavior. It is nevertheless a good learning exercise, IMO.
For various reasons, your computer represents integers as groups of 8-bit values (called bytes); note that, although extremely common, this is not always the case (see CHAR_BIT
). For this reason, values that are represented using more than 8 bits use multiple bytes (hence those using a number of bits with is a multiple of 8). For a 32-bit value, you use 4 bytes and, in memory, those bytes always follow each other.
We call a pointer a value containing the address in memory of another value. In that context, a byte is defined as the smallest (in terms of bit count) value that can be referred to by a pointer. For example, your 32-bit value, covering 4 bytes, will have 4 "addressable" cells (one per byte) and its address is defined as the first of those addresses:
|==================|
| MEMORY | ADDRESS |
|========|=========|
| ... | x-1 | <== Pointer to byte before
|--------|---------|
| BYTE 0 | x | <== Pointer to first byte (also pointer to 32-bit value)
|--------|---------|
| BYTE 1 | x+1 | <== Pointer to second byte
|--------|---------|
| BYTE 2 | x+2 | <== Pointer to third byte
|--------|---------|
| BYTE 3 | x+3 | <== Pointer to fourth byte
|--------|---------|
| ... | x+4 | <== Pointer to byte after
|===================
So what you want to do (split the 32-bit word into 8-bits word) has already been done by your computer, as it is imposed onto it by its processor and/or memory architecture. To reap the benefits of this almost-coincidence, we are going to find where your 32-bit value is stored and read its memory byte-by-byte (instead of 32 bits at a time).
As all serious SO answers seem to do so, let me cite the Standard (ISO/IEC 9899:2018, 6.2.5-20) to define the last thing I need (emphasis mine):
Any number of derived types can be constructed from the object and function types, as follows:
- An array type describes a contiguously allocated nonempty set of objects with a particular member object type, called the element type. [...] Array types are characterized by their element type and by the number of elements in the array. [...]
- [...]
So, as elements in an array are defined to be contiguous, a 32-bit value in memory, on a machine with 8-bit bytes, really is nothing more, in its machine representation, than an array of 4 bytes!
Given a 32-bit signed value:
int32_t value;
its address is given by &value
. Meanwhile, an array of 4 8-bit bytes may be represented by:
uint8_t arr[4];
notice that I use the unsigned variant because those bytes don't really represent a number per se so interpreting them as "signed" would not make sense. Now, a pointer-to-array-of-4-uint8_t
is defined as:
uint8_t (*ptr)[4];
and if I assign the address of our 32-bit value to such an array, I will be able to index each byte individually, which means that I will be reading the byte directly, avoiding any pesky shifting-and-masking operations!
uint8_t (*bytes)[4] = (void *) &value;
I need to cast the pointer ("(void *)
") because I can't bear that whining compiler &value
's type is "pointer-to-int32_t
" while I'm assigning it to a "pointer-to-array-of-4-uint8_t
" and this type-mismatch is caught by the compiler and pedantically warned against by the Standard; this is a first warning that what we're doing is not ideal!
Finally, we can access each byte individually by reading it directly from memory through indexing: (*bytes)[n]
reads the n
-th byte of value
!
To put it all together, given a send_can(uint8_t)
function:
for (size_t i = 0; i < sizeof(*bytes); i++)
send_can((*bytes)[i]);
and, for testing purpose, we define:
void send_can(uint8_t b)
{
printf("%hhu\n", b);
}
which prints, on my machine, when value
is 32700
:
188
127
0
0
Lastly, this shows yet another reason why this method is platform-dependent: the order in which the bytes of the 32-bit word is stored isn't always what you would expect from a theoretical discussion of binary representation i.e:
- byte 0 contains bits 31-24
- byte 1 contains bits 23-16
- byte 2 contains bits 15-8
- byte 3 contains bits 7-0
actually, AFAIK, the C Language permits any of the 24 possibilities for ordering those 4 bytes (this is called endianness). Meanwhile, shifting and masking will always get you the n
-th "logical" byte.