I know that Prolog is based on first order predicate logic especially Horn Clauses and that they are a special form of modus ponens.
In a sense, inverse "modus ponens":
a :- b
You want to show "a true", and to do so, you have to show "b true"
A fact and a rule if they occur solo are simply clauses, but as soon as I add more than one occurrence they become a predicate.
No, they are all predicates. The "predicate" is an object/agent/program/platonic-phenomenon which expresses that there (objectively) is some "relationship" between "things", and you can ask the Prolog Processor about that relationship. There is no direct meaning associated to all of that though, it's "strings related to strings via strings". We are working with syntactic machines after all (i.e. computers).
Enter this logic program:
p(x,y). % Predicate p/2 states that there is a relationship p between x and y
And now, you can query the database about what the program is saying:
?- p(x,y).
true. % a p relationship exists (fact, but could also be rule)
?- p(x,A).
A = y. % the thing related to x via p is y
?- p(A,y).
A = x. % the thing related to x via p is y
?- p(A,B).
A = x, % things related via p are x and y
B = y.
?- p(c,d).
false. % not REALLY "false" but "as far as I can tell, there
% is no relationship p between c and d"
Note the interpretation of "false", which is not the "strong false" of classical logic. Even though it is traditionally state that Prolog works in classical logic, this is not really the case:
From "Logic Programming with Strong Negation" (David Pearce, Gerd Wagner, FU Berlin, 1991), appears in Springer LNAI 475: Extensions of Logic Programming, International Workshop Tübingen, FRG, December 8–10, 1989 Proceedings):
According to the standard view, a logic program is a set of definite Horn clauses. Thus, logic programs are regarded as syntactically restricted first-order theories within the framework of classical logic. Correspondingly, the proof theory of logic programs is considered as the specialized version of classical resolution, known as SLD-resolution. This view, however, neglects the fact that a program clause, a_0 <— a_1, a_2, • • •, a_n, is an expression of a fragment of positive logic (a subsystem of intuitionistic logic) rather than an implicational formula of classical logic. The classical interpretation of logic programs, therefore, seems to be a semantical overkill.
It should be clear that in order to explain the deduction mechanism of Prolog one does not have to refer to the indirect method of SLD-resolution which checks for the refutability of the contrary. It is certainly more natural to view Prolog's proof procedure as a kind of natural deduction, as, for example, in [Hallnäs & Schroeder-Heister 1987] and [Miller 1989]. This also is more in line with the intuitions of a Prolog programmer. Since Prolog is the paradigm, logic programming semantics should take it as a point of departure.
Now:
How are the quantors of first order predicate logic represented and related
to fact, rule, predicate or the Prolog concept in general?
That is a long story. Note that Prolog is primarily about "programming using logic", and also about "modeling using logic". The two aspects certainly overlap well for problems that can be solved using explicit enumeration, but Prolog is not made for specifying general FOL constraints describing a sought-for solution. In fact, certain FOL constraints cannot be represented and other have to be transformed into nominally equivalent expression that are agreeable to the machine. Look up "skolemization". For example: https://www.cs.toronto.edu/~sheila/384/w11/Lectures/csc384w11-KR-tutorial.pdf
On the flip side, Prolog provides "meta-predicates" which generate solutions by calling other predicates, so it's making forays into second-order logic. As it must - nobody can survive in the FOL desert for long.
What does the functor express
Nothing. It just stands for itself. Pure syntax. Look up "Herbrand Universe".
How do I formulate this in predicate logic and first order predicate logic
what is the semantic and logic difference between
vertical(line).
line(vertical).
It's you who imbues vertical
and line
with meaning. So, feelings. You want a "vertial line", so you would say, the "thing" is the "line" and "vertical" is an attribute of the "line". So vertical(line)
sounds appropriate. Or maybe attribute(line,vertical)
. It depends.
Here:
point(X,Y).
line(point(W,X), point(Y,Z)).
You have to aspects:
Predicates express "relationships". "Function symbols" are used to construct "things with structure": you can form trees of stuff with function symbols on nodes and integers/strings/variables on leaves. These are called "term". But terms can appear as predicates or as things, depending on the context, it's quite fluid. So you can for example construct a Prolog program with another Prolog program.
point(X,Y)
line(point(W,X), point(Y,Z))
These are terms!
If you type this into a file program.pl
:
point_on_line(point(X,Y),line(point(W,X), point(Y,Z))).
The terms appear as "things" related by predicate point_on_line/2
. The whole line is itself a term.
If you type this into a file program.pl
:
point(X,Y).
line(point(W,X), point(Y,Z)).
The terms appear as "predicates", and point
appears both as predicate point/2
and as "thing" about which predicate line/2
is talking.
This is actually a vast subject and it takes some time getting used to it, much more than functional programming. I had some Prolog and Logic courses at uni but 20 years later I found out that I had badly misunderstood a lot of aspects.