I have implemented separable Gaussian blur. Horizontal pass was relatively easy to optimize with SIMD processing. However, I am not sure how to optimize vertical pass.
Accessing elements is not very cache friendly and filling SIMD lane would mean reading many different pixels. I was thinking about transpose the image and run horizontal pass and then transpose image back, however, I am not sure if it will gain any improvement because of two tranpose operations.
I have quite large images 16k resolution and kernel size is 19, so vectorization of vertical pass gain was about 15%.
My Vertical pass is as follows (it is sinde generic class typed to T which can be uint8_t or float):
int yStart = kernelHalfSize;
int xStart = kernelHalfSize;
int yEnd = input.GetWidth() - kernelHalfSize;
int xEnd = input.GetHeigh() - kernelHalfSize;
const T * inData = input.GetData().data();
V * outData = output.GetData().data();
int kn = kernelHalfSize * 2 + 1;
int kn4 = kn - kn % 4;
for (int y = yStart; y < yEnd; y++)
{
size_t yW = size_t(y) * output.GetWidth();
size_t outX = size_t(xStart) + yW;
size_t xEndSimd = xStart;
int len = xEnd - xStart;
len = len - len % 4;
xEndSimd = xStart + len;
for (int x = xStart; x < xEndSimd; x += 4)
{
size_t inYW = size_t(y) * input.GetWidth();
size_t x0 = ((x + 0) - kernelHalfSize) + inYW;
size_t x1 = x0 + 1;
size_t x2 = x0 + 2;
size_t x3 = x0 + 3;
__m128 sumDot = _mm_setzero_ps();
int i = 0;
for (; i < kn4; i += 4)
{
__m128 kx = _mm_set_ps1(kernelDataX[i + 0]);
__m128 ky = _mm_set_ps1(kernelDataX[i + 1]);
__m128 kz = _mm_set_ps1(kernelDataX[i + 2]);
__m128 kw = _mm_set_ps1(kernelDataX[i + 3]);
__m128 dx, dy, dz, dw;
if constexpr (std::is_same<T, uint8_t>::value)
{
//we need co convert uint8_t inputs to float
__m128i u8_0 = _mm_loadu_si128((const __m128i*)(inData + x0));
__m128i u8_1 = _mm_loadu_si128((const __m128i*)(inData + x1));
__m128i u8_2 = _mm_loadu_si128((const __m128i*)(inData + x2));
__m128i u8_3 = _mm_loadu_si128((const __m128i*)(inData + x3));
__m128i u32_0 = _mm_unpacklo_epi16(
_mm_unpacklo_epi8(u8_0, _mm_setzero_si128()),
_mm_setzero_si128());
__m128i u32_1 = _mm_unpacklo_epi16(
_mm_unpacklo_epi8(u8_1, _mm_setzero_si128()),
_mm_setzero_si128());
__m128i u32_2 = _mm_unpacklo_epi16(
_mm_unpacklo_epi8(u8_2, _mm_setzero_si128()),
_mm_setzero_si128());
__m128i u32_3 = _mm_unpacklo_epi16(
_mm_unpacklo_epi8(u8_3, _mm_setzero_si128()),
_mm_setzero_si128());
dx = _mm_cvtepi32_ps(u32_0);
dy = _mm_cvtepi32_ps(u32_1);
dz = _mm_cvtepi32_ps(u32_2);
dw = _mm_cvtepi32_ps(u32_3);
}
else
{
/*
//load 8 consecutive values
auto dd = _mm256_loadu_ps(inData + x0);
//extract parts by shifting and casting to 4 values float
dx = _mm256_castps256_ps128(dd);
dy = _mm256_castps256_ps128(_mm256_permutevar8x32_ps(dd, _mm256_set_epi32(0, 0, 0, 0, 4, 3, 2, 1)));
dz = _mm256_castps256_ps128(_mm256_permutevar8x32_ps(dd, _mm256_set_epi32(0, 0, 0, 0, 5, 4, 3, 2)));
dw = _mm256_castps256_ps128(_mm256_permutevar8x32_ps(dd, _mm256_set_epi32(0, 0, 0, 0, 6, 5, 4, 3)));
*/
dx = _mm_loadu_ps(inData + x0);
dy = _mm_loadu_ps(inData + x1);
dz = _mm_loadu_ps(inData + x2);
dw = _mm_loadu_ps(inData + x3);
}
//calculate 4 dots at once
//[dx, dy, dz, dw] <dot> [kx, ky, kz, kw]
auto mx = _mm_mul_ps(dx, kx); //dx * kx
auto my = _mm_fmadd_ps(dy, ky, mx); //mx + dy * ky
auto mz = _mm_fmadd_ps(dz, kz, my); //my + dz * kz
auto res = _mm_fmadd_ps(dw, kw, mz); //mz + dw * kw
sumDot = _mm_add_ps(sumDot, res);
x0 += 4;
x1 += 4;
x2 += 4;
x3 += 4;
}
for (; i < kn; i++)
{
auto v = _mm_set_ps1(kernelDataX[i]);
auto v2 = _mm_set_ps(
*(inData + x3), *(inData + x2),
*(inData + x1), *(inData + x0)
);
sumDot = _mm_add_ps(sumDot, _mm_mul_ps(v, v2));
x0++;
x1++;
x2++;
x3++;
}
sumDot = _mm_mul_ps(sumDot, _mm_set_ps1(weightX));
if constexpr (std::is_same<V, uint8_t>::value)
{
__m128i asInt = _mm_cvtps_epi32(sumDot);
asInt = _mm_packus_epi32(asInt, asInt);
asInt = _mm_packus_epi16(asInt, asInt);
uint32_t res = _mm_cvtsi128_si32(asInt);
((uint32_t *)(outData + outX))[0] = res;
outX += 4;
}
else
{
float tmpRes[4];
_mm_store_ps(tmpRes, sumDot);
outData[outX + 0] = tmpRes[0];
outData[outX + 1] = tmpRes[1];
outData[outX + 2] = tmpRes[2];
outData[outX + 3] = tmpRes[3];
outX += 4;
}
}
for (int x = xEndSimd; x < xEnd; x++)
{
int kn = kernelHalfSize * 2 + 1;
const T * v = input.GetPixelStart(x - kernelHalfSize, y);
float tmp = 0;
for (int i = 0; i < kn; i++)
{
tmp += kernelDataX[i] * v[i];
}
tmp *= weightX;
outData[outX] = ImageUtils::clamp_cast<V>(tmp);
outX++;
}
}