I'm having some difficulty to convert a numpy matrix to Julia array with native types. So here is my problem: I have a code that returns a numpy matrix with the firsts 73 columns are bool that represents a feature array and the last column the probability associated with the vector of features.
B = np.ndarray((10,74),dtype = object)
B[:,0:73] = int(0)
B[:,-1] = float(0)
And I have a Julia code that call and receive this numpy matrix
using PyCall
push!(pyimport("sys")["path"], pwd());
a = pyimport("main")
t = a.analyze()
However my variable t is is an Array of PyObject and I would like to convert the entire Array to have native types (bool and flop). Because I'll use these variable in JuMP module.
10×74 Array{PyObject,2}:
PyObject True PyObject False PyObject True PyObject False PyObject False … PyObject False PyObject False PyObject 0.4842317916002127
PyObject True PyObject False PyObject True PyObject False PyObject False PyObject False PyObject False PyObject 0.4077830940988835
PyObject True PyObject False PyObject True PyObject False PyObject False PyObject False PyObject False PyObject 0.4134680134680136
PyObject True PyObject False PyObject True PyObject True PyObject False PyObject False PyObject False PyObject 0.8565891472868217
PyObject True PyObject False PyObject True PyObject True PyObject False PyObject False PyObject False PyObject 0.4753872053872055
PyObject True PyObject False PyObject True PyObject True PyObject False … PyObject False PyObject False PyObject 0.5216037930323644
PyObject True PyObject False PyObject True PyObject True PyObject False PyObject False PyObject False PyObject 0.5216037930323644
PyObject True PyObject False PyObject True PyObject True PyObject False PyObject False PyObject False PyObject 0.4775252525252527
PyObject True PyObject False PyObject True PyObject True PyObject False PyObject False PyObject False PyObject 0.47481481481481497
PyObject True PyObject False PyObject True PyObject True PyObject False PyObject False PyObject False PyObject 0.5277056277056278