UPDATE: This is a long question that boils down to, can someone explain the numpy array class to me? I answered my own question below.
I am working on a project to import data from matlab into a mysql database whose contents will be made available through a django website. I want to use Scipy.io.loadmat to get the information from matlab into a form I can use in python so that I can enter the data into the database with the django api.
My problem is that I cannot work with the data imported by scipy.io.loadmat. It is loaded in the form of several nested arrays and some of the variable names seem to be lost.
Here is the matlab code for a test structure that I have created for a trial:
sensors.time = [0:1:10].';
sensors.sensor1 = {};
sensors.sensor1.source_type = 'flight';
sensors.sensor1.source_name = 'flight-2';
sensors.sensor1.channels = {};
sensors.sensor1.channels.channel1.name = '1';
sensors.sensor1.channels.channel1.local_ori = 'lateral';
sensors.sensor1.channels.channel1.vehicle_ori = 'axial';
sensors.sensor1.channels.channel1.signals = {};
sensors.sensor1.channels.channel1.signals.signal1.filtered = 'N';
sensors.sensor1.channels.channel1.signals.signal1.filtered_description = 'none';
sensors.sensor1.channels.channel1.signals.signal1.data = sin(sensors.time)+0.1*rand(11,1);
>> sensors
time: [11x1 double]
sensor1: [1x1 struct]
>> sensors.sensor1
source_type: 'flight'
source_name: 'flight-2'
channels: [1x1 struct]
>> sensors.sensor1.channels
channel1: [1x1 struct]
>> sensors.sensor1.channels.channel1
name: '1'
local_ori: 'lateral'
vehicle_ori: 'axial'
signals: [1x1 struct]
>> sensors.sensor1.channels.channel1.signals
signal1: [1x1 struct]
>> sensors.sensor1.channels.channel1.signals.signal1
filtered: 'N'
filtered_description: 'none'
data: [11x1 double]
I can easily visualize this structure as a python dictionary, so it does not seem like this should be such a complicated exercise.
Here is the python code I used to read the file in (eventually I want to read in multiple files):
from scipy
import os, glob
path = 'C:\Users\c\Desktop\import'
for f in glob.glob( os.path.join(path, '*.mat')):
matfile = scipy.io.loadmat(f, struct_as_record=True)
This is the resulting dictionary from loadmat:
>>> matfile
{'sensors': array([[ ([[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]],[[(array([u'flight'],
dtype='<U6'), array([u'flight-2'],
dtype='<U8'), array([[ ([[(array([u'1'],
dtype='<U1'), array([u'lateral'],
dtype='<U7'), array([u'axial'],
dtype='<U5'), array([[ ([[(array([u'N'],
dtype='<U1'), array([u'none'],
dtype='<U4'), array([[ 0.06273465],[ 0.84363597],[ 1.00035443],[ 0.22117587],[-0.68221775],[-0.87761299],[-0.24108487],[ 0.71871452],[ 1.04690773],[ 0.46512366],[-0.51651414]]))]],)]],
dtype=[('signal1', '|O4')]))]],)]],
dtype=[('channel1', '|O4')]))]])]],
dtype=[('time', '|O4'), ('sensor1', '|O4')]), '__version__': '1.0', '__header__': 'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Tue Jun 07 18:38:32 2011', '__globals__': []}
The data is all there, but I don't know how to access these class objects. I would like to be able to loop over contents so that I can process, multiple sensors, then multiple channels for each sensor, etc.
Any explanations to help me simplify this data structure or suggested changes to make this easier would be greatly appreciated.
Update, based on Nick's suggestion here is the repr(matfile) and the dir(matfile)
>>> repr(matfile)
"{'sensors': array([[ ([[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]], [[(array([u'flight'], \n dtype='<U6'), array([u'flight-2'], \n dtype='<U8'), array([[ ([[(array([u'1'], \n dtype='<U1'), array([u'lateral'], \n dtype='<U7'), array([u'axial'], \n dtype='<U5'), array([[ ([[(array([u'N'], \n dtype='<U1'), array([u'none'], \n dtype='<U4'), array([[ 0.0248629 ],\n [ 0.88663486],\n [ 0.93206871],\n [ 0.22156497],\n [-0.65819207],\n [-0.95592508],\n [-0.22584908],\n [ 0.66569432],\n [ 1.06956739],\n [ 0.51103298],\n [-0.53732649]]))]], [[(array([u'Y'], \n dtype='<U1'), array([u'1. 5 Hz High Pass, 2. remove offset'], \n dtype='<U35'), array([[ 0. ],\n [ 0.84147098],\n [ 0.90929743],\n [ 0.14112001],\n [-0.7568025 ],\n [-0.95892427],\n [-0.2794155 ],\n [ 0.6569866 ],\n [ 0.98935825],\n [ 0.41211849],\n [-0.54402111]]))]])]], \n dtype=[('signal1', '|O4'), ('signal2', '|O4')]))]],)]], \n dtype=[('channel1', '|O4')]))]])]], \n dtype=[('time', '|O4'), ('sensor1', '|O4')]), '__version__': '1.0', '__header__': 'MATLAB 5.0 MAT-file, Platform: PCWIN64, Created on: Wed Jun 08 10:58:19 2011', '__globals__': []}"
>>> dir(matfile)
['__class__', '__cmp__', '__contains__', '__delattr__', '__delitem__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'has_key', 'items', 'iteritems', 'iterkeys', 'itervalues', 'keys', 'pop', 'popitem', 'setdefault', 'update', 'values', 'viewitems', 'viewkeys', 'viewvalues']
>>> dir(matfile['sensors'])
['T', '__abs__', '__add__', '__and__', '__array__', '__array_finalize__', '__array_interface__', '__array_prepare__', '__array_priority__', '__array_struct__', '__array_wrap__', '__class__', '__contains__', '__copy__', '__deepcopy__', '__delattr__', '__delitem__', '__delslice__', '__div__', '__divmod__', '__doc__', '__eq__', '__float__', '__floordiv__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__getslice__', '__gt__', '__hash__', '__hex__', '__iadd__', '__iand__', '__idiv__', '__ifloordiv__', '__ilshift__', '__imod__', '__imul__', '__index__', '__init__', '__int__', '__invert__', '__ior__', '__ipow__', '__irshift__', '__isub__', '__iter__', '__itruediv__', '__ixor__', '__le__', '__len__', '__long__', '__lshift__', '__lt__', '__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__nonzero__', '__oct__', '__or__', '__pos__', '__pow__', '__radd__', '__rand__', '__rdiv__', '__rdivmod__', '__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__', '__rlshift__', '__rmod__', '__rmul__', '__ror__', '__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__', '__rxor__', '__setattr__', '__setitem__', '__setslice__', '__setstate__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__truediv__', '__xor__', 'all', 'any', 'argmax', 'argmin', 'argsort', 'astype', 'base', 'byteswap', 'choose', 'clip', 'compress', 'conj', 'conjugate', 'copy', 'ctypes', 'cumprod', 'cumsum', 'data', 'diagonal', 'dot', 'dtype', 'dump', 'dumps', 'fill', 'flags', 'flat', 'flatten', 'getfield', 'imag', 'item', 'itemset', 'itemsize', 'max', 'mean', 'min', 'nbytes', 'ndim', 'newbyteorder', 'nonzero', 'prod', 'ptp', 'put', 'ravel', 'real', 'repeat', 'reshape', 'resize', 'round', 'searchsorted', 'setfield', 'setflags', 'shape', 'size', 'sort', 'squeeze', 'std', 'strides', 'sum', 'swapaxes', 'take', 'tofile', 'tolist', 'tostring', 'trace', 'transpose', 'var', 'view']
Obviously I need to learn a bit about objects and classes. How can I pull bits of the array and put them into variables. For example:
time = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
source_type = 'flight'
etc.