I have a df which contains, nothing
, NaN
and missing
. to remove rows which contains missing
I can use dropmissing
. Is there any methods to deal with NaN
and nothing
?
Sample df:
│ Row │ x │ y │
│ │ Union…? │ Char │
├─────┼─────────┼──────┤
│ 1 │ 1.0 │ 'a' │
│ 2 │ missing │ 'b' │
│ 3 │ 3.0 │ 'c' │
│ 4 │ │ 'd' │
│ 5 │ 5.0 │ 'e' │
│ 6 │ NaN │ 'f' │
Expected output:
│ Row │ x │ y │
│ │ Any │ Char │
├─────┼─────┼──────┤
│ 1 │ 1.0 │ 'a' │
│ 2 │ 3.0 │ 'c' │
│ 3 │ 5.0 │ 'e' │
What I have tried so far, Based on my knowledge in Julia I tried this,
df.x = replace(df.x, NaN=>"something", missing=>"something", nothing=>"something")
print(df[df."x".!="something", :])
My code is working as I expected. I feel it's ineffective way of solving this issue. Is there any separate method to deal with nothing and NaN?