I have an installation script for ERPNext that works just fine on Ubuntu 18.04. When I run the same script on 20.04 I am obliged to wait more than 20 minutes for it to complete where it takes around 30 secs on 18.04.
My script includes these two lines:
./env/bin/pip install numpy==1.18.5
./env/bin/pip install pandas==0.24.2
Their output is:
Collecting numpy==1.18.5
Downloading numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl (20.6 MB)
|████████████████████████████████| 20.6 MB 138 kB/s
Installing collected packages: numpy
Successfully installed numpy-1.18.5
Collecting pandas==0.24.2
Downloading pandas-0.24.2.tar.gz (11.8 MB)
|████████████████████████████████| 11.8 MB 18.0 MB/s
Requirement already satisfied: python-dateutil>=2.5.0 in ./env/lib/python3.8/site-packages (from pandas==0.24.2) (2.8.1)
Requirement already satisfied: pytz>=2011k in ./env/lib/python3.8/site-packages (from pandas==0.24.2) (2019.3)
Requirement already satisfied: numpy>=1.12.0 in ./env/lib/python3.8/site-packages (from pandas==0.24.2) (1.18.5)
Requirement already satisfied: six>=1.5 in ./env/lib/python3.8/site-packages (from python-dateutil>=2.5.0->pandas==0.24.2) (1.13.0)
Building wheels for collected packages: pandas
Building wheel for pandas (setup.py) ... done
Created wheel for pandas: filename=pandas-0.24.2-cp38-cp38-linux_x86_64.whl size=43655329 sha256=0067caf3a351f263bec1f4aaa3e11c5857d0434db7f56bec7135f3c3f16c8c2b
Stored in directory: /home/erpdev/.cache/pip/wheels/3d/17/1e/85f3aefe44d39a0b4055971ba075fa082be49dcb831db4e4ae
Successfully built pandas
Installing collected packages: pandas
Successfully installed pandas-0.24.2
The line "Building wheel for pandas (setup.py) ... /" is where the 20 min delay occurs.
This is all run from within the Frappe/ERPnext command directory, which has an embedded copy of pip3, like this:
erpdev@erpserver:~$ cd ~/frappe-bench/
erpdev@erpserver:~/frappe-bench$ ./env/bin/pip --version
pip 20.1.1 from /home/erpdev/frappe-bench/env/lib/python3.8/site-packages/pip (python 3.8)
erpdev@erpserver:~/frappe-bench$
I would be most grateful for any suggestions how to speed it up.