When I use deeplearning4j and try to train a model in Spark
public MultiLayerNetwork fit(JavaRDD<DataSet> trainingData)
fit() need a JavaRDD parameter, I try to build like this
val totalDaset = csv.map(row => {
val features = Array(
row.getAs[String](0).toDouble, row.getAs[String](1).toDouble
)
val labels = Array(row.getAs[String](21).toDouble)
val featuresINDA = Nd4j.create(features)
val labelsINDA = Nd4j.create(labels)
new DataSet(featuresINDA, labelsINDA)
})
but the tip of IDEA is No implicit arguments of type:Encode[DataSet]
it's a error and I dont know how to solve this problem,
I know SparkRDD can transform to JavaRDD, but I dont know how to build a Spark RDD[DataSet]
DataSet is in import org.nd4j.linalg.dataset.DataSet
Its construction method is
public DataSet(INDArray first, INDArray second) {
this(first, second, (INDArray)null, (INDArray)null);
}
this is my code
val spark:SparkSession = {SparkSession
.builder()
.master("local")
.appName("Spark LSTM Emotion Analysis")
.getOrCreate()
}
import spark.implicits._
val JavaSC = JavaSparkContext.fromSparkContext(spark.sparkContext)
val csv=spark.read.format("csv")
.option("header","true")
.option("sep",",")
.load("/home/hadoop/sparkjobs/LReg/data.csv")
val totalDataset = csv.map(row => {
val features = Array(
row.getAs[String](0).toDouble, row.getAs[String](1).toDouble
)
val labels = Array(row.getAs[String](21).toDouble)
val featuresINDA = Nd4j.create(features)
val labelsINDA = Nd4j.create(labels)
new DataSet(featuresINDA, labelsINDA)
})
val data = totalDataset.toJavaRDD
create JavaRDD[DataSet] by Java in deeplearning4j official guide:
String filePath = "hdfs:///your/path/some_csv_file.csv";
JavaSparkContext sc = new JavaSparkContext();
JavaRDD<String> rddString = sc.textFile(filePath);
RecordReader recordReader = new CSVRecordReader(',');
JavaRDD<List<Writable>> rddWritables = rddString.map(new StringToWritablesFunction(recordReader));
int labelIndex = 5; //Labels: a single integer representing the class index in column number 5
int numLabelClasses = 10; //10 classes for the label
JavaRDD<DataSet> rddDataSetClassification = rddWritables.map(new DataVecDataSetFunction(labelIndex, numLabelClasses, false));
I try to create by scala:
val JavaSC: JavaSparkContext = new JavaSparkContext()
val rddString: JavaRDD[String] = JavaSC.textFile("/home/hadoop/sparkjobs/LReg/hf-data.csv")
val recordReader: CSVRecordReader = new CSVRecordReader(',')
val rddWritables: JavaRDD[List[Writable]] = rddString.map(new StringToWritablesFunction(recordReader))
val featureColnum = 3
val labelColnum = 1
val d = new DataVecDataSetFunction(featureColnum,labelColnum,true,null,null)
// val rddDataSet: JavaRDD[DataSet] = rddWritables.map(new DataVecDataSetFunction(featureColnum,labelColnum, true,null,null))
// can not reslove overloaded method 'map'
debug error infomations: