please i really need your help, i'm struggling with MinMaxScaler, i would like to apply this technique on the array below that contains columns with string and numbers. I only want to implement this technique on the columns that contains numbers.
clean_tweets_no_urls = pd.DataFrame(counts_no_urls.most_common(15),
columns=['words', 'count'])
clean_tweets_no_urls.head()
minmax_scaling(clean_tweets_no_urls, columns=['words', 'count'])
For that, i'm getting this result :
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-108-eeb7b44d7121> in <module>
----> 1 minmax_scaling(clean_tweets_no_urls, columns=['words', 'count'])
C:\ProgramData\Anaconda3\lib\site-packages\mlxtend\preprocessing\scaling.py in minmax_scaling(array, columns, min_val, max_val)
36
37 """
---> 38 ary_new = array.astype(float)
39 if len(ary_new.shape) == 1:
40 ary_new = ary_new[:, np.newaxis]
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\generic.py in astype(self, dtype, copy, errors)
5696 else:
5697 # else, only a single dtype is given
-> 5698 new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors)
5699 return self._constructor(new_data).__finalize__(self)
5700
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in astype(self, dtype, copy, errors)
580
581 def astype(self, dtype, copy: bool = False, errors: str = "raise"):
--> 582 return self.apply("astype", dtype=dtype, copy=copy, errors=errors)
583
584 def convert(self, **kwargs):
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in apply(self, f, filter, **kwargs)
440 applied = b.apply(f, **kwargs)
441 else:
--> 442 applied = getattr(b, f)(**kwargs)
443 result_blocks = _extend_blocks(applied, result_blocks)
444
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\internals\blocks.py in astype(self, dtype, copy, errors)
623 vals1d = values.ravel()
624 try:
--> 625 values = astype_nansafe(vals1d, dtype, copy=True)
626 except (ValueError, TypeError):
627 # e.g. astype_nansafe can fail on object-dtype of strings
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\dtypes\cast.py in astype_nansafe(arr, dtype, copy, skipna)
895 if copy or is_object_dtype(arr) or is_object_dtype(dtype):
896 # Explicit copy, or required since NumPy can't view from / to object.
--> 897 return arr.astype(dtype, copy=True)
898
899 return arr.view(dtype)
ValueError: could not convert string to float: 'joebiden'