This might help you to find the non-numeric values in your data set.
First, create a data frame, and set certain elements of Column 12 to non-numeric values:
import numpy as np
import pandas as pd
nrows, ncols = (10, 15)
data = np.arange(nrows * ncols).reshape((nrows, ncols))
df = pd.DataFrame(data)
df.iloc[2:5, 12] = 'x'
Second, extract column 12, and convert to numeric type:
df_2 = df.iloc[:, 12].copy()
df_2 = pd.to_numeric(df_2, errors='coerce')
Third, find the non-numeric values (with a Boolean mask):
mask = df_2.isna()
print(df[mask].iloc[:, 12])
2 x
3 x
4 x
Name: 12, dtype: object