Figured I'd answer this myself after some more research. Most of the other answers are correct in some way, but don't necessarily explain the whole deal in one go, so I'll try to sum up here.
This first snippet from the question works event wise, but blocks if the Synchronous path in UpdateSomethingAsync is taken. Events work because "await" automatically captures the SynchronizationContext (this is key) for the UI thread, such that any events raised from UpdateSomethingAsync are marshalled back to the UI, via the SynchronizationContext. This is just the normal way of using async/await:
private async void MyDropDownBox_DropDownClosed(object sender, EventArgs e)
{
//This blocks if the DoSomethingSynchronous path is taken, causing UI to
//become unresponsive, but events propagate back to the UI correctly.
await UpdateSomethingAsync();
}
Task.Run works in much the same way, if you aren't using it to run an async method. In other words, this works without blocking and will still send events to the UI thread, because UpdateSomethingAsync is replaced with a Synchronous method. This is just the normal usage of Task.Run:
private async void MyDropDownBox_DropDownClosed(object sender, EventArgs e)
{
//UpdateSomethingAsync is replaced with a Synchronous version, and run with
// Task.Run.
await Task.Run(UpdateSomethingSynchronously());
}
However, the original code in question is Async, so the above doesn't apply. The question poses the following snippet as a possible solution, but it errors out with an Illegal Cross Thread call to the UI when an event is raised, because we are using Task.Run to call an Async method, and for some reason this does not set the SynchronizationContext:
private async void MyDropDownBox_DropDownClosed(object sender, EventArgs e)
{
//This no longer blocks, but events raised from UpdateSomethingAsync
//will cause an Illegal Cross Thread Exception to the UI, because the
//SyncrhonizationContext is not correct. Without the SynchronizationContext,
//events are not marshalled back to the UI thread.
await Task.Run(()=> UpdateSomethingAsync());
}
What does seem to work is to use Task.Factory.StartNew to assign the UI SynchronizationContext to the Task using TaskScheduler.FromCurrentSynchronizationContext, like so:
private async void MyDropDownBox_DropDownClosed(object sender, EventArgs e)
{
//This doesn't block and will return events to the UI thread sucessfully,
//because we are explicitly telling it the correct SynchronizationContext to use.
await Task.Factory.StartNew(()=> UpdateSomethingAsync(),
System.Threading.CancellationToken.None,
TaskCreationOptions.None,
TaskScheduler.FromCurrentSynchronizationContext);
}
What also works, and is very simple but "lies" a little to the caller, is to simply wrap DoSomethingSynchronous in Task.Run:
public async Task UpdateSomethingAsync(){
if (ConditionIsMet){
await DoSomethingAsync;
}else{
await Task.Run(DoSomethingSynchronous);
}
}
I consider this a little bit of a lie, because the method is not really fully Async in the sense that it spins off a Thread Pool thread, but may never pose an issue to a caller.
Hopefully this makes sense. If any of this is proven incorrect please let me know, but this is what my testing has uncovered.