Ok, so I actually assume this is some sort of HW assignment - but maybe it's not, either way it was fun to do, here's a solution for your specific example, maybe you can generalize it to any shape array:
def fill_ones(arr, idxs):
x = np.where(np.arange(arr.shape[1]) <= idxs[0], 0, 1) # This is the important logic.
y = np.where(np.arange(arr.shape[1]) <= idxs[1], 0, 1)
return np.array([x, y])
So where the comment is located - we use a condition to assign 0 to all indices before some index value, and 1 after such value. This actually creates a new array as opposed to a mask that we can use to the original array - so maybe it's "dirtier".
Also, I suspect it's possible to generalize to arrays more than 2 dimensions, but the solution i'm imagining now uses a for-loop. Hope this helps!
Note: arr
is just a numpy array of whatever shape you want the output to be and idxs
is a tuple of what indices past you want to the array elements to turn into 1's - hope that is clear