If you're using pandas Dataframes and Python 3, you can do it like this:
import pandas as pd
values = {'dates': ['20190902101010','20190913202020','20190921010101'],
'status': ['Opened','Opened','Closed']
}
df = pd.DataFrame(values, columns = ['dates','status'])
df['dates_datetime'] = pd.to_datetime(df['dates'], format='%Y%m%d%H%M%S')
df['dates_datetime_tz'] = df.dates_datetime.dt.tz_localize('UTC').dt.tz_convert('Asia/Kolkata')
print (df)
print (df.dtypes)
Result:
dates status dates_datetime dates_datetime_tz
0 20190902101010 Opened 2019-09-02 10:10:10 2019-09-02 15:40:10+05:30
1 20190913202020 Opened 2019-09-13 20:20:20 2019-09-14 01:50:20+05:30
2 20190921010101 Closed 2019-09-21 01:01:01 2019-09-21 06:31:01+05:30
I've converted from UTC to a specific TZ, you can choose any other you need.