I am building a Deep Learning rig with a GeForce RTX 2060.
I am wanting to use baselines-stable which isn't tensorflow 2.0 compatible yet.
According to here and here, tensorflow-gpu-1.15 is only listed as compatible with CUDA 10.0, not CUDA 10.1.
Attempting to download CUDA from Nvidia, the option for Ubuntu 20.04 is not available for CUDA 10.0.
Searching the apt-cache does not result in CUDA 10.0 either.
$ sudo apt-cache policy nvidia-cuda-toolkit
[sudo] password for lansford:
nvidia-cuda-toolkit:
Installed: (none)
Candidate: 10.1.243-3
Version table:
10.1.243-3 500
500 http://us.archive.ubuntu.com/ubuntu focal/multiverse amd64 Packages
I would highly prefer not to have to reinstall the OS with an older version of Ubuntu. However experimenting with reinforcement learning was the motive for purchasing this PC.
I see some possible clues that it might be possible to build tensorflow-gpu-1.15 from source with cuda 10.1 support. I also saw a random comment that tensorflow-gpu-1.15 will just-work with tf 1.15, but I am not wanting to make a miss-step installing things until I have a signal that is the direction to go. Uninstalling things isn't always straightforward.
- Should I install CUDA 10.1 and cross my fingers 1.15 will like it.
- Should I download the install for CUDA 10.0 for a the older Ubuntu version and see if it will install anyway
- Should I attempt to compile tensorflow from source against CUDA 10.1 (heh heh heh)
- Should I install and older version of Ubuntu and hope I don't go obsolete too quickly.
Given the situation is there a way to run tensorflow 1.15 with gpu support on Ubuntu 20.04.1?