I have a very large dataset and I want to change every value with either a "<" or ">" into an NA. I tried using the following command from the naniar package:
df %>% replace_with_na_at(.vars = c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O"), condition = ~.x == ">") %>% print()
The thing is, the "<" or ">" is only a part of each value, but the dataset is way too large (the dput below is barely a fraction of it) for me to specify every individual value I want to replace. How do I select every value that simply has a ">" or "<" in it and replace it with NA?
structure(list(`Analyte Sample` = c(1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14), A = c("4190", "6665", "7435", "2052",
"783", "322", "199", "90", "46", "17", "8", "3", "3", "<1↓"
), B = c("11569", "6677", "3852", "983.88", "589", "359", "203",
"68", "33", "12", "6", "<2↓", "4", "<1↓"), C = c("20453",
"7699", "2499", "707.98", "412", "328", "156", "88", "39", "27",
"17", "<1↓", "<3↓", "<1↓"), D = c("7893", ">20000↑",
"1623", "685.64", "321", "644", "112", "65", "35", "29", "9",
"5", "<3↓", "<1↓"), E = c("320", "15444", "2049", "1065",
"389", "365", "145", "77", "38", "16", "9", "6", "<2↓", "<2↓"
), F = c("7438", ">21999↑", "3472", "1057", "563", "401", "167",
"89", "46", "19", "6", "<1↓", "<1↓", "<1↓"), G = c(7345,
9001, 2473, 1138, 516, 403, 134, 81, 37, 17, 8, 6, 4, 3), H = c("9004",
"3998", "2299", "964.88", "499", "341", "112", "88", "39", "32",
"<29↓", "<30↓", "<31↓", "<29↓"), I = c("8434", "8700",
"2217", "1263", "567", "352", "153", "80", "43", "18", "9", "2",
"3", "<1↓"), J = c("7734", "6733", "2092", "1115", "637", "332",
"155", "82", "37", "17", "10", "4", "1", "<1↓"), K = c(">3718↑",
">3000↑", "2118", "862.13", "426", "355", "143", "78", "44",
"22", "11", "<4↓", "<4↓", "<3↓"), L = c(6345, 7688, 2311,
1195, 647, 366, 177, 83, 41, 20, 8, 6, 3, 2), M = c("4222", ">25587↑",
"1846", "814.61", "422", "314", "154", "86", "41", "27", "21",
"<2↓", "<2↓", "<3↓"), N = c("6773", "8934", "2381", "1221",
"677", "356", "146", "89", "40", "17", "10", "5", "2", "<2↓"
), O = c(">2200↑", ">2133↑", ">2000↑", "564.5", "226",
"476", "111", "60", "32", "36", "18", "<10↓", "<1↓", "<2↓"
)), class = c("spec_tbl_df", "tbl_df", "tbl", "data.frame"), row.names = c(NA,
-14L), spec = structure(list(cols = list(`Analyte Sample` = structure(list(), class = c("collector_double",
"collector")), A = structure(list(), class = c("collector_character",
"collector")), B = structure(list(), class = c("collector_character",
"collector")), C = structure(list(), class = c("collector_character",
"collector")), D = structure(list(), class = c("collector_character",
"collector")), E = structure(list(), class = c("collector_character",
"collector")), F = structure(list(), class = c("collector_character",
"collector")), G = structure(list(), class = c("collector_double",
"collector")), H = structure(list(), class = c("collector_character",
"collector")), I = structure(list(), class = c("collector_character",
"collector")), J = structure(list(), class = c("collector_character",
"collector")), K = structure(list(), class = c("collector_character",
"collector")), L = structure(list(), class = c("collector_double",
"collector")), M = structure(list(), class = c("collector_character",
"collector")), N = structure(list(), class = c("collector_character",
"collector")), O = structure(list(), class = c("collector_character",
"collector"))), default = structure(list(), class = c("collector_guess",
"collector")), skip = 1), class = "col_spec"))