What you ask is not possible with the features provided by ISO C++.
However, on most common platforms, reserving physical RAM is possible using platform-specific extensions. For example, Linux provides the function mlock and Microsoft Windows provides the function VirtualLock. But, in order to use these functions, you must either
- know which memory pages the default allocator is using for memory allocation, which can get messy and complicated, or
- use your own implementation of a memory allocator, so that it can itself call
mlock
/VirtualLock
whenever it receives memory from the operating system.
Your own implementation of a memory allocator could be as simple as forwarding all memory allocation request to the operating system's kernel, for example using mmap on Linux or VirtualAlloc on Windows. However, this has the disadvantage that the granularity of all memory allocation requests is the size of a memory page, which on most systems is at least 4096 bytes. This means that even very small memory allocation requests of a few bytes will actually take 4096 bytes of memory. This would be a big waste of memory. Also, in your question, you stated that you wanted to preallocate a certain amount of memory when you start your application, so that you can use that memory later to satisfy smaller memory allocation requests. This cannot be done using the method described above.
Therefore, you may want to consider using a "proper" memory allocator implementation, which is able to satisfy several smaller allocation requests using a single memory page. See this list on Wikipedia for a list of common implementations.
That said, what you describe may be an XY problem, depending on what operating system you are using. For example, in contrast to Windows, Linux will typically overcommit memory. This means that the Linux kernel will allow applications to allocate more memory than is actually available, on the assumption that most applications will not use all the memory they request. Therefore, a call to std::malloc
or new
will seldom fail on Linux (but it is still possible, depending on the configuration). Instead, under low memory conditions, the Linux OOM killer (out of memory killer) will start killing processes that are taking up large amounts of memory, in order to free up memory and to keep the system running.
For this reason, the methods described above are likely to work on Microsoft Windows, but on Linux, they could be counterproductive, as they would make your process more likely to fall prey to the OOM killer.
However, even if you are able to accomplish what you want using the methods described above, I generally don't recommend that you use these methods, as this behavior is unfair towards the other processes in the system. Generally, you should leave the task of deciding which process gets (fast) physical memory and which process gets (slow) swap space to the operating system, as the operating system can do a better job of fairly distributing its resources among its processes.