Consider the following custom layer code from a TensorFlow tutorial:
class MyDenseLayer(tf.keras.layers.Layer):
def __init__(self, num_outputs):
super(MyDenseLayer, self).__init__()
self.num_outputs = num_outputs
def build(self, input_shape):
self.kernel = self.add_weight("kernel",
shape=[int(input_shape[-1]),
self.num_outputs])
def call(self, input):
return tf.matmul(input, self.kernel)
How do I apply any pre-defined regularization (say tf.keras.regularizers.L1
) or custom regularization on the parameters of the custom layer?