The first part of this question (import multiple csv files) is really a duplicate of How do I make a list of data frames?.
But the second part -- combining some frames -- is a little different. I'll generate some sample data.
From the duplicate part, you'd probably use something like below to read in the files:
alldat <- sapply(list.files(somedir, pattern = "ch.*_img.*_ch.*.csv", full.names = TRUE),
read.csv, stringsAsFactors = FALSE,
simplify = FALSE)
Even if you just use this code blindly, I still recommend you read over the answers in How do I make a list of data frames?, as the advice and methodology are efficient and very idiomatic to R. Done correctly, they can make many workflows significantly easier to visualize, understand, and maintain.
To mimic import process, I'll use this fake data:
alldat <- list(
"ch1_img1_ch1ROI" = mtcars[1:2,],
"ch1_img1_ch2ROI" = mtcars[3:4,],
"ch1_img2_ch1ROI" = mtcars[5:6,],
"ch2_img1_ch1ROI" = mtcars[7:8,],
"ch2_img1_ch2ROI" = mtcars[9:10,],
"ch2_img2_ch2ROI" = mtcars[11:12,]
)
alldat
# $ch1_img1_ch1ROI
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4 4
# Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
# $ch1_img1_ch2ROI
# mpg cyl disp hp drat wt qsec vs am gear carb
# Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
# Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
# $ch1_img2_ch1ROI
# mpg cyl disp hp drat wt qsec vs am gear carb
# Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.02 0 0 3 2
# Valiant 18.1 6 225 105 2.76 3.46 20.22 1 0 3 1
# $ch2_img1_ch1ROI
# mpg cyl disp hp drat wt qsec vs am gear carb
# Duster 360 14.3 8 360.0 245 3.21 3.57 15.84 0 0 3 4
# Merc 240D 24.4 4 146.7 62 3.69 3.19 20.00 1 0 4 2
# $ch2_img1_ch2ROI
# mpg cyl disp hp drat wt qsec vs am gear carb
# Merc 230 22.8 4 140.8 95 3.92 3.15 22.9 1 0 4 2
# Merc 280 19.2 6 167.6 123 3.92 3.44 18.3 1 0 4 4
# $ch2_img2_ch2ROI
# mpg cyl disp hp drat wt qsec vs am gear carb
# Merc 280C 17.8 6 167.6 123 3.92 3.44 18.9 1 0 4 4
# Merc 450SE 16.4 8 275.8 180 3.07 4.07 17.4 0 0 3 3
By your logic, we have some combinations of X/Y that are unique and some that have multiple N's. Let's group solely by X/Y combinations.
First, we'll extract the X and Y components into a unique string for each filename:
gsub(".*ch([0-9]+)_.*ch([0-9]+).*", "\\1_\\2", names(alldat))
# [1] "1_1" "1_2" "1_1" "2_1" "2_2" "2_2"
Notice that we have some frames that need to be combined, namely elements 1 and 3, and elements 5 and 6.
split
the list of frames by this string. Notice how we have a list of 4 elements, each of which is a nested list of 1 or more frames.
spllists <- split(alldat, gsub(".*ch([0-9]+)_.*ch([0-9]+).*", "\\1_\\2", names(alldat)))
str(spllists, max.level = 2)
# List of 4
# $ 1_1:List of 2
# ..$ ch1_img1_ch1ROI:'data.frame': 2 obs. of 11 variables:
# ..$ ch1_img2_ch1ROI:'data.frame': 2 obs. of 11 variables:
# $ 1_2:List of 1
# ..$ ch1_img1_ch2ROI:'data.frame': 2 obs. of 11 variables:
# $ 2_1:List of 1
# ..$ ch2_img1_ch1ROI:'data.frame': 2 obs. of 11 variables:
# $ 2_2:List of 2
# ..$ ch2_img1_ch2ROI:'data.frame': 2 obs. of 11 variables:
# ..$ ch2_img2_ch2ROI:'data.frame': 2 obs. of 11 variables:
Iterate (lapply
) over the outer list, combining the inner lists. To do the inner row-combining, we'd use
spllists[[1]]
# $ch1_img1_ch1ROI
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 21 6 160 110 3.9 2.620 16.46 0 1 4 4
# Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
# $ch1_img2_ch1ROI
# mpg cyl disp hp drat wt qsec vs am gear carb
# Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.02 0 0 3 2
# Valiant 18.1 6 225 105 2.76 3.46 20.22 1 0 3 1
do.call(rbind, spllists[[1]])
# mpg cyl disp hp drat wt qsec vs am gear carb
# ch1_img1_ch1ROI.Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
# ch1_img1_ch1ROI.Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
# ch1_img2_ch1ROI.Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
# ch1_img2_ch1ROI.Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
So to do this for all elements in the spllists
, we'll use
alldat2 <- lapply(spllists, function(x) do.call(rbind, x))
alldat2
# $`1_1`
# mpg cyl disp hp drat wt qsec vs am gear carb
# ch1_img1_ch1ROI.Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
# ch1_img1_ch1ROI.Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
# ch1_img2_ch1ROI.Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
# ch1_img2_ch1ROI.Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
# $`1_2`
# mpg cyl disp hp drat wt qsec vs am gear carb
# ch1_img1_ch2ROI.Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
# ch1_img1_ch2ROI.Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
# $`2_1`
# mpg cyl disp hp drat wt qsec vs am gear carb
# ch2_img1_ch1ROI.Duster 360 14.3 8 360.0 245 3.21 3.57 15.84 0 0 3 4
# ch2_img1_ch1ROI.Merc 240D 24.4 4 146.7 62 3.69 3.19 20.00 1 0 4 2
# $`2_2`
# mpg cyl disp hp drat wt qsec vs am gear carb
# ch2_img1_ch2ROI.Merc 230 22.8 4 140.8 95 3.92 3.15 22.9 1 0 4 2
# ch2_img1_ch2ROI.Merc 280 19.2 6 167.6 123 3.92 3.44 18.3 1 0 4 4
# ch2_img2_ch2ROI.Merc 280C 17.8 6 167.6 123 3.92 3.44 18.9 1 0 4 4
# ch2_img2_ch2ROI.Merc 450SE 16.4 8 275.8 180 3.07 4.07 17.4 0 0 3 3