I'm trying to make an Evaluator for my model. Until now every other components are fine but When I try this config:
eval_config = tfma.EvalConfig(
model_specs=[
tfma.ModelSpec(label_key='Category'),
],
metrics_specs=tfma.metrics.default_multi_class_classification_specs(),
slicing_specs=[
tfma.SlicingSpec(),
tfma.SlicingSpec(feature_keys=['Category'])
])
to make this evaluator:
model_resolver = ResolverNode(
instance_name='latest_blessed_model_resolver',
resolver_class=latest_blessed_model_resolver.LatestBlessedModelResolver,
model=Channel(type=Model),
model_blessing=Channel(type=ModelBlessing))
context.run(model_resolver)
evaluator = Evaluator(
examples=example_gen.outputs['examples'],
model=trainer.outputs['model'],
baseline_model=model_resolver.outputs['model'],
eval_config=eval_config)
context.run(evaluator)
I get this:
[...]
IndexError Traceback (most recent call last)
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/apache_beam/runners/common.cpython-37m-darwin.so in apache_beam.runners.common.DoFnRunner.process()
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/apache_beam/runners/common.cpython-37m-darwin.so in apache_beam.runners.common.PerWindowInvoker.invoke_process()
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/apache_beam/runners/common.cpython-37m-darwin.so in apache_beam.runners.common.PerWindowInvoker._invoke_process_per_window()
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/apache_beam/runners/common.cpython-37m-darwin.so in apache_beam.runners.common._OutputProcessor.process_outputs()
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/apache_beam/runners/worker/operations.cpython-37m-darwin.so in apache_beam.runners.worker.operations.SingletonConsumerSet.receive()
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/apache_beam/runners/worker/operations.cpython-37m-darwin.so in apache_beam.runners.worker.operations.PGBKCVOperation.process()
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/apache_beam/runners/worker/operations.cpython-37m-darwin.so in apache_beam.runners.worker.operations.PGBKCVOperation.process()
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/tensorflow_model_analysis/evaluators/metrics_and_plots_evaluator_v2.py in add_input(self, accumulator, element)
355 for i, (c, a) in enumerate(zip(self._combiners, accumulator)):
--> 356 result = c.add_input(a, get_combiner_input(elements[0], i))
357 for e in elements[1:]:
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/tensorflow_model_analysis/metrics/calibration_histogram.py in add_input(self, accumulator, element)
141 flatten=True,
--> 142 class_weights=self._class_weights)):
143 example_weight = float(example_weight)
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/tensorflow_model_analysis/metrics/metric_util.py in to_label_prediction_example_weight(inputs, eval_config, model_name, output_name, sub_key, class_weights, flatten, squeeze, allow_none)
283 elif sub_key.top_k is not None:
--> 284 label, prediction = select_top_k(sub_key.top_k, label, prediction)
285
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/tensorflow_model_analysis/metrics/metric_util.py in select_top_k(top_k, labels, predictions, scores)
621 if not labels.shape or labels.shape[-1] == 1:
--> 622 labels = one_hot(labels, predictions)
623
/opt/miniconda3/envs/archiving/lib/python3.7/site-packages/tensorflow_model_analysis/metrics/metric_util.py in one_hot(tensor, target)
671 # indexing the -1 and then removing it after.
--> 672 tensor = np.delete(np.eye(target.shape[-1] + 1)[tensor], -1, axis=-1)
673 return tensor.reshape(target.shape)
IndexError: arrays used as indices must be of integer (or boolean) type
During handling of the above exception, another exception occurred:
[...]
IndexError: arrays used as indices must be of integer (or boolean) type [while running 'ExtractEvaluateAndWriteResults/ExtractAndEvaluate/EvaluateMetricsAndPlots/ComputeMetricsAndPlots()/ComputePerSlice/ComputeUnsampledMetrics/CombinePerSliceKey/WindowIntoDiscarding']
I thought it was my config, but I don't get what is wrong with this.
I'm using this data set Kaggle - BBC News Classification. I've followed this notebook: TFX - Chicago Taxi in order to serve my model with Tensorflow Serving.
Note: The model I'm using look like this:
def _build_keras_model(vectorize_layer: TextVectorization) -> tf.keras.Model:
input_layer = tf.keras.layers.Input(shape=(1,), dtype=tf.string)
deep = vectorize_layer(input_layer)
deep = layers.Embedding(_max_features + 1, _embedding_dim)(deep)
deep = layers.Dropout(0.5)(deep)
deep = layers.GlobalAveragePooling1D()(deep)
deep = layers.Dropout(0.5)(deep)
output = layers.Dense(5, activation=tf.nn.softmax)(deep)
model = tf.keras.Model(input_layer, output)
model.compile(
loss=losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer='adam',
metrics=['accuracy'])
model.summary(print_fn=absl.logging.info)
return model