I have the following data:
dat <- structure(list(year = c(1979L, 1979L, 1979L, 1979L, 1979L, 1979L,
1979L, 1979L, 1979L, 1979L, 1979L, 1980L, 1980L, 1980L, 1980L,
1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1980L, 1981L,
1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L,
1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L, 1981L,
1981L, 1981L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L,
1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L,
1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L, 1982L,
1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L, 1983L,
1983L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L, 1984L,
1984L, 1984L, 1984L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L,
1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L,
1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L,
1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L,
1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L,
1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L, 1985L,
1985L, 1986L, 1986L, 1986L, 1987L, 1987L, 1987L, 1987L, 1987L,
1987L, 1987L, 1987L, 1987L, 1987L, 1987L, 1988L, 1988L, 1988L,
1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L, 1988L,
1988L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1989L, 1990L,
1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L,
1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1990L, 1991L, 1991L,
1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L, 1991L,
1991L, 1991L, 1991L, 1992L, 1992L, 1992L, 1992L, 1992L, 1992L,
1992L, 1992L, 1992L, 1993L, 1993L, 1993L, 1993L, 1993L, 1994L,
1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L,
1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L,
1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L,
1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1994L, 1995L,
1995L, 1995L, 1995L, 1996L, 1996L, 1996L, 1996L, 1996L), mon = c(5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 5L, 5L, 5L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
5L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L), day = c(16L, 17L, 18L, 19L,
20L, 21L, 22L, 23L, 24L, 25L, 26L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L,
27L, 28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 7L, 8L,
9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L,
30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L,
14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L,
27L, 28L, 29L, 30L, 31L, 18L, 19L, 20L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 29L, 30L, 31L, 1L, 2L, 3L, 4L,
5L, 6L, 7L, 8L, 9L, 10L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 24L,
25L, 26L, 27L, 28L, 29L, 30L, 31L, 1L, 2L, 3L, 4L, 5L, 6L, 7L,
8L, 9L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L,
28L, 29L, 30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 28L, 29L,
30L, 1L, 2L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L, 16L,
17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L,
30L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 17L, 18L,
19L, 20L, 28L, 29L, 30L, 1L, 2L), phase = c(6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 8L, 8L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L,
8L, 8L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 7L,
7L, 6L, 5L, 5L, 5L, 5L, 5L, 7L, 8L, 8L, 8L, 8L, 8L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 5L, 5L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L,
8L, 8L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L,
4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 7L, 7L, 7L, 6L, 6L, 6L, 6L,
6L, 7L, 7L, 7L, 8L, 8L, 1L, 7L, 7L, 8L, 8L, 8L, 8L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 7L, 7L, 7L,
8L, 8L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 7L, 7L, 8L, 8L,
8L, 8L, 8L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 1L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 3L, 3L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L,
8L, 1L, 1L, 1L, 1L), Rainfall = c(23.2, 35.575, 37.4, 6.425,
10.275, 3.05, 50.075, 23.05, 2, 1.4, 3.325, 12.84, 0.68, 7.78,
0, 12.88, 91.48, 41.08, 4.48, 0, 0.26, 0, 2.32, 13.25, 64.5,
21.55, 82.175, 33.725, 48.95, 3.8, 16.875, 4.7, 7.7, 48.7, 25.275,
3.625, 0.075, 2.5, 0, 3.525, 0.725, 0.2, 0.625, 0.25, 2.85, 6.15,
10.675, 41.975, 24.975, 127.775, 86.225, 19.95, 1.725, 11.125,
0.075, 1.775, 5.825, 5.975, 18.125, 6.425, 3.725, 11.75, 13.975,
0.1, 1, 0.725, 4.775, 0.225, 2.625, 0.575, 13.375, 0, 0, 0, 0,
0, 0, 0, 0.825, 0, 0, 0.45, 2.2, 4.5, 0, 0, 0.05, 0, 0, 0.225,
0.975, 5.375, 9.1, 27.3, 47.7, 31.475, 4.8, 11.45, 3.15, 2.3,
14.975, 77.25, 112.225, 69.675, 27.625, 43.65, 34.85, 47.325,
65.725, 83.825, 29.525, 29.95, 12.575, 0, 3.2, 30.95, 26.25,
4.15, 0.025, 0.5, 0.375, 5.15, 3.525, 0, 0.55, 2.025, 10.525,
0.4, 0.05, 9.225, 0.2, 5.25, 0, 0.5, 1.3, 3.175, 7.825, 1.15,
3.475, 0.4, 0.1, 0.2, 4.275, 3.45, 0.075, 3.95, 23.525, 6.2,
5.7, 6.1, 4.975, 2.7, 0.95, 0, 0, 1.55, 37.525, 53.8, 26.275,
101.25, 81.825, 26.05, 6.4, 6.75, 0.65, 2.475, 2.7, 1.45, 0.775,
0.2, 5.8, 0.36, 0.02, 0.8, 2.64, 3.44, 26.8, 17.98, 3.88, 33.48,
8.08, 15.8, 11.52, 21.44, 31.18, 13.06, 12.92, 0.24, 4.48, 9.4,
4.24, 4.36, 2.34, 5.72, 16.56, 10.96, 24.12, 2.96, 28.48, 14.72,
6.32, 0, 0.3, 3.46, 0.62, 0.76, 0.46, 17.22, 10.92, 1.96, 2.92,
0, 0, 3.44, 3.86, 2.88, 0.72, 0, 0, 0.06, 1.62, 28.74, 0.64,
0, 0, 1.18, 0.42, 5.46, 3.56, 0.44, 0.48, 4.9, 1.48, 2.7, 19.94,
0.4, 7.28, 29.56, 8.72, 1.5, 2.32, 2.42, 4.62, 1.2, 13.88, 9.76,
26.32, 11, 23.8, 10.08, 17.04, 47.6, 15.22, 4.06, 60.3, 71.2,
16.54, 0.44, 0.68, 0, 0.88, 0.1, 0.04, 0.34, 0, 0.36)), row.names = c(NA,
266L), class = "data.frame")
There are four columns in this data: year, month, day, phase, Rainfall
I would like to:
(1) Count the number of cases when rainfall is below 5 mm/day for at least 3 consecutive days (length >= 3)
(2) and the start (first occurrence) of these consecutive days should have a phase equal to 1.
I have the following incorrect script:
dat2<-subset(dat, phase == 1)
countruns = function(x){
rainfall_rle_df <- data.frame(unclass(rle(x$Rainfall < 5)))
nrow(subset(rainfall_rle_df, lengths >= 3 & values == TRUE))
}
countruns(dat2)
This script gives me a value of 5, but this is incorrect. The correct answer for the whole data should only be 4.
So the problem is that this script ignores the starting phase of the consecutive days.
For example the year 1996 in the data above has the following values:
year month day phase Rainfall
1996 6 28 8 0.100
1996 6 29 1 0.040
1996 6 30 1 0.340
1996 7 1 1 0.000
1996 7 2 1 0.360
The starting phase is phase 8 so this should not be counted.
The years that satisfied the above conditions should be 1983, 1984, 1991, and 1993.
Any suggestions on how I can do this in R? Or is there a better way to do this in R?
I have to put the script inside a function countruns().
I'll appreciate any help!